metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Caracterización de un modelo murino en el que la deficiencia parcial de folato ...
Información de la revista
Vol. 16. Núm. 5.
Páginas 192-197 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 5.
Páginas 192-197 (enero 2004)
Acceso a texto completo
Caracterización de un modelo murino en el que la deficiencia parcial de folato no induce hiperhomocisteinemia
Characterization of a rodent model in which partial folate deficiency does not induce hyperhomocisteinemia
Visitas
2960
L. Calpe-Berdiel, J.C. Escolà-Gil, V. Ribas, R. Arcelus, F. Blanco-Vaca
Autor para correspondencia
fblancova@hsp.santpau.es

Correspondencia: Servei de Bioquímica. Hospital de la Santa Creu i Sant Pau. Sant Antoni M. Claret, 167. 08025 Barcelona. España
Servei de Bioquímica i Institut de Recerca. Hospital de la Santa Creu i Sant Pau. Barcelona. España
Este artículo ha recibido
Información del artículo
Introducción y objetivos

El posible papel de los folatos en la prevención de enfermedades cardiovasculares o neurodegenerativas es un tema de actualidad. Diversos estudios epidemiológicos han demostrado una asociación inversa entre los valores de esta vitamina en sangre y la morbimortalidad cardiovascular o la enfermedad de Alzheimer. Múltiples estudios han constatado los efectos hipohomocisteinemiantes del folato. Recientemente se han descrito efectos beneficiosos del folato en el endotelio que son homocisteínaindependientes. Para evaluar su potencial relevancia fisiopatológica se requiere que haya modelos en que los que se pueda disociar hiperhomocisteinemia y deficiencia de folato.

Material y métodos

Estudio histológico y morfométrico de las lesiones arterioscleróticas en ratones C57BL/6 alimentados con dieta Western (una dieta con un alto contenido en grasas saturadas) deficiente o no en folatos.

Resultados

Los animales con déficit vitamínico de folato no presentaron hiperhomocisteinemia. Tampoco presentaron diferencias en la glucosa ni en los parámetros lipídicos, hematológicos o la función renal. La deficiencia en folatos no aumentó el área (5.310 ± 1.346 frente a 4522 ± 1276 mm2 en el grupo control) ni el número de lesiones arterioscleróticas (1,4 ± 0,3 frente a 2,0 ± 0,5 en el grupo control).

Conclusiones

El ratón es un buen modelo para diferenciar los efectos debidos a déficit de folato de los ocasionados por hiperhomocisteinemia, un binomio que suele ser inseparable en humanos. La deficiencia de folato, en ausencia de hiperhomocisteinemia, no incrementa la magnitud ni el número de lesiones arterioscleróticas en el ratón.

Palabras clave:
Deficiencia de folato
Arteriosclerosis
Vitaminas B
Homocisteína
Introduction and objectives

Introduction and objectives. The potential role of folates in the prevention of cardiovascular and neurodegenerative diseases is a topic of current interest. Several studies have showed an association between these vitamin levels and cardiovascular and Alzheimer morbidity and/or mortality. Many studies have demonstrated the homocysteinelowering effects of folates. It has recently been demonstrated that folates have homocysteineindependent protective actions at endothelial level. To evaluate their pathophysiological significance, models are required in which folate deficiency and hyperhomocysteinemia can be dissociated.The potential role of folates in the prevention of cardiovascular and neurodegenerative diseases is a topic of current interest. Several studies have showed an association between these vitamin levels and cardiovascular and Alzheimer morbidity and/or mortality. Many studies have demonstrated the homocysteinelowering effects of folates. It has recently been demonstrated that folates have homocysteineindependent protective actions at endothelial level. To evaluate their pathophysiological significance, models are required in which folate deficiency and hyperhomocysteinemia can be dissociated.

Material and methods

Histologic and morphometric study of aortic atherosclerosis was conducted in C57BL/6 mice fed a Western type diet (rich in saturated fat) containing or not folates.

Results

Animals with vitamin deficiency did not present hyperhomocysteinemia. No changes were observed in lipid profile, glucose or hematological and renal function parameters. Folate deficiency did not increase either the size (5310 ± 1346 mm2 versus 4522 ± 1276 mm2 in the control group) or number of atherosclerotic lesions (1.4 ± 0.3 versus 2.0 ± 0.5 in the control group).

Conclusions

The mouse is a good model for separating the differential effects of folate deficiency from those of hyperhomocysteinemia. Folate deficiency, in absence of hyperhomocysteinemia, does not increase either the size or number of atherosclerotic lesions.

Key words:
Folate deficiency
Atherosclerosis
B vitamins
Homocysteine
El Texto completo está disponible en PDF
Bibliografía
[1.]
B. Shane.
Folate chemistry and metabolism.
Folate in health and disease, pp. 1-22
[2.]
J.D. Duthie, L.J. Whalley, A.R. Collins, S. Leaper, K. Berger, I.J. Deary.
Homocysteine, B vitamin status, and cognitive function in elderly.
Am J Clin Nutr, 75 (2002), pp. 908-913
[3.]
B.W.J.H. Penninx, J.M. Guralnik, L. Ferrucci, L.P. Fried, R.H. Allen, S.P. Stabler.
Vitamin B12 deficiency and depression in physically disabled older women: epidemiologic evidence from the women’s health and aging study.
Am J Psychiatry, 157 (2000), pp. 715-721
[4.]
A.E. Czeizel.
Prevention of congenital abnormalities by periconceptional multivitamin supplementation.
BMJ, 306 (1993), pp. 1645-1649
[5.]
I.M. Graham, P. O’Callaghan.
The role of folic acid in the prevention of cardiovascular disease.
Curr Opin Lipidol, 11 (2000), pp. 577-587
[6.]
F. Blanco-Vaca.
Hiperhomocisteinemia asociada a múltiples enfermedades, desde la aterotrombosis al alzheimer: ¿casualidad o causalidad?.
Clin Invest Arterioscl, 15 (2003), pp. 69-72
[7.]
J.W. Eikelboom, E. Lonn, J. Genest, G. Hankey, S. Yusuf.
Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence.
Ann Intern Med, 131 (1999), pp. 363-375
[8.]
R. Clarke, L. Daly, K. Robinson, E. Naughteu, S. Cahalane, B. Fowler, et al.
Hyperhomocysteinemia: an independent risk factor for vascular disease.
N Engl J Med, 324:1149-1455 (1991),
[9.]
A.P. Burke, V. Fonseca, F. Kolodgie, A. Zieske, L. Fink, R. Virmani.
Increased serum homocysteine and sudden death resulting from coronary atherosclerosis with fibrous plaques.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 1936-1941
[10.]
J. Selhub, P.F. Jacques, P.W. Wilson, D. Rush, I.H. Rosenberg.
Vitamin status and intake as primary determinants of homocysteinemia in an elderly population.
J Am Med Assoc, 270 (1993), pp. 2693-2698
[11.]
K. Robinson, K. Arheart, H. Refsum, L. Brattstrom, G. Boers, P. Ueland, et al.
Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. european COMAC group.
Circulation, 97 (1998), pp. 437-443
[12.]
E.B. Rimm, W.C. Willett, F.B. Hu, L. Sampson, G.A. Colditz, J.E. Mauron, et al.
Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women.
JAMA, 279 (1998), pp. 359-364
[13.]
P.F. Jacques, A.G. Bostom, R.R. Williams, R.C. Ellison, J.H. Eckfelott, I.H. Rosenberg, et al.
Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations.
Circulation, 93 (1996), pp. 7-9
[14.]
H.I. Morrisson, D. Schaubel, M. Desmeules, D.T. Wigle.
Serum folate risk of fatal coronary heart disease.
JAMA, 275 (1996), pp. 1893-1896
[15.]
P. Verhoef, C.H. Hennekens, M.R. Malinow, F.J. Kok, W.C. Willett, M.J. Stampfer.
A prospective study of plasma homocyst(e)ine and risk of ischaemia.
Stroke, 25 (1994), pp. 1924-1930
[16.]
M.C. Verhaar, D.J. Rabelink.
Future for folates in cardiovascular disease.
Eur J Clin Invest, 29 (1999), pp. 657-658
[17.]
M.L. Verhaar, R.M.F. Wever, J.J.P. Kastelein, T. Van Dam, H.A. Koomans, T.J. Rabelink.
5-methyltetrahydrofolate active form of folic acid the endothelial function in familial hypercholesterolaemia improves.
Circulation, 97 (1998), pp. 237-241
[18.]
J. Zhou, J. Moller, C.C. Danielsen, J. Bentzon, H.B. Ravn, R.C. Austin, et al.
Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in apoE-deficient mice.
Arterioscler Thromb Vasc Biol, 21 (2001), pp. 1470-1476
[19.]
M.A. Hofmann, E. Lalla, Y. Lu, M.R. Gleason, B.M. Wolf, N. Tanji, et al.
Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model.
J Clin Invest, 107 (2001), pp. 675-683
[20.]
Committee on care use of laboratory animals. guide for the care of laboratory animals use of laboratory animal resources.institute of laboratory animalresources.
[21.]
F. Blanco-Vaca, R. Arcelús, F. González-Sastre, J. Ordóñez-Llanos, J.M. Queraltó-Compañó.
Comparison of the abbott imx® and a high-performance liquid chromatography method for measuring total plasma homocysteine.
Clin Chem Lab Med, 38 (2000), pp. 327-329
[22.]
J.G. Julve, J.C. Escolà-Gil, A. Marzal-Casacuberta, J. Ordóñez-Llanos, F. González-Sastre, F. Blanco-Vaca.
Increased production of verylow-density lipoproteins in transgenic mice overexpressing human apolipoprotein A-II and fed with a high-fat diet.
Biochim Biophys Acta, 1488 (2000), pp. 233-244
[23.]
J.C. Escolà-Gil, J.G. Julve, A. Marzal-Casacuberta, J. Ordóñez-Llanos, F. González-Sastre, F. Blanco-Vaca.
ApoA-II expression in cetp transgenic mice increases vldl production and impairs vldl clearance.
J Lipid Res, 42 (2001), pp. 241-248
[24.]
F. Blanco Vaca, M. Cortés Rius, F. González Sastre.
Urea y creatinina plasmáticas como parámetros dignósticos de insuficiencia glomerular.
Med Clin (Barc, 87 (1986), pp. 617-621
[25.]
V. Herbert.
Biochemical and hematologic lesions in folic acid deficiency.
Am J Clin Nutr, 20 (1967), pp. 562-572
[26.]
J. Zhou, J. Moller, M. Ritskes-Hoitinga, M.L. Larsen, R.C. Austin, E. Falk.
Effects of vitamin supplementation and hyperhomocysteinemia on atherosclerosis in apoE-deficient mice.
Atherosclerosis, 168 (2003), pp. 255-262
[27.]
R.T. Eberhardt, M.A. Forgione, A. Cap, J.A. Leopold, M.A. Rudd, M. Trolliet, et al.
Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia.
J Clin Invest, 106 (2000), pp. 483-491
[28.]
N. Weiss, S. Heydrick, Y.Y. Zhang, C. Bierl, A. Cap, J. Loscalzo.
Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine β-synthase-deficient mice.
Arterioscler Thromb Vasc Biol, 2 (2001), pp. 34-41
[29.]
P. Durand, S. Lussier-Cacan, D. Blanche.
Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats.
FASEB J, 11 (1997), pp. 1157-1168
[30.]
G.M. Rodgers, M.T. Conn.
Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells.
Blood, 75 (1990), pp. 895-901
[31.]
S.R. Lentz, J.E. Sadler.
Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.
J Clin Invest, 88 (1991), pp. 1906-1914
[32.]
M.A. Hofmann, E. Lalla, Y. Lu, M.R. Gleason, B.M. Wolf, N. Tanji, et al.
Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model.
J Clin Invest, 107 (2001), pp. 675-683
[33.]
O. Mayer, J. Filipovsky, M. Hromádka, V. Svobodová, J. Racek, O. Mayer Jr., et al.
Treatment of hyperhomocysteinemia with folic acid: effects on homocysteine levels, coagulation status, and oxidative stress markers.
J Cardiol Pharmacology, 39 (2002), pp. 851-857
[34.]
J. Tsai, M.A. Perrella, M. Yoshizumi, C. Hsieh, E. Haber, R. Schlegel, et al.
Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis.
Proc Natl Acad Sci, 91 (1994), pp. 6369-6373
[35.]
W.Y. Fu, N.P. Dudman, M.A. Perry, X.L. Wang.
Leukocytes extravasation in acute homocysteinemic rats.
Atherosclerosis, 161 (2002), pp. 177-183
[36.]
T. Koga, K. Claycombe, M. Meydani.
Homocysteine increases monocyte and T-cell adhesion to human aortic endothelial cells.
Atherosclerosis, 161 (2002), pp. 365-374
[37.]
G. Wang, C.W. Woo, F.L. Sung, Y.L. Siow.
Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 1777-1783
[38.]
J.D. Symons, A.E. Mullick, J.L. Ensunsa, A.A. Ma, J.C. Rutledge.
Hyperhomocysteinemia evoked by folate depletion. effects on coronary and carotid arterial function.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 772-780
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos