metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Fármacos antihipertensivos y aterogénesis
Información de la revista
Vol. 17. Núm. S1.
Hot topics en Arteriosclerosis
Páginas 16-24 (mayo 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. S1.
Hot topics en Arteriosclerosis
Páginas 16-24 (mayo 2005)
Hot topics en arteriosclerosis
Acceso a texto completo
Fármacos antihipertensivos y aterogénesis
Antihypertensive agents and atherogenesis
Visitas
306
C.F. Rueda-Clausen, A.P. Couto, D. Sanz-Rosa, N. de Las Heras, E. Cediel, M. Miana, V. Cachofeiro, V. Lahera
Autor para correspondencia
vlahera@med.ucm.es

Correspondencia: Dr. V. Lahera. Departamento de Fisiología. Facultad de Medicina. Universidad Complutense. Avda. Complutense, s/n. 28040 Madrid. España.
Departamento de Fisiología. Facultad de Medicina. Universidad Complutense de Madrid. Madrid. España
Este artículo ha recibido
Información del artículo

La reducción de la presión arterial (PA) mediante el tratamiento antihipertensivo reduce la morbimortalidad cardiovascular en pacientes con hipertensión, así como en pacientes no hipertensos con diversos factores de riesgo cardiovascular. La reducción de las cifras de PA parece ser el principal mecanismo por el que este tipo de fármacos ejercen sus efectos beneficiosos, ya que a través de diversos mecanismos disminuyen el desarrollo, la progresión y las complicaciones de la aterosclerosis, base fisiopatológica de la enfermedad vascular y de los accidentes vasculares. Numerosos estudios han puesto de manifiesto que diversas familias de fármacos antihipertensivos, principalmente los inhibidores de la enzima de conversión de la angiotensina y los antagonistas de los repectores de la angiotensina II, algunos antagonistas del cacio, ciertos bloqueadores beta y alfa-antagonistas, tienen efectos antiateroscleróticos y antitrombóticos que son independientes de la reducción de la PA. Los efectos sobre los factores endoteliales, el estrés oxidativo, el proceso inflamatorio vascular y el equilibrio fibrinolítico son algunos de los principales mecanismos antiateroscleróticos de los mencionados fármacos antihipertensivos.

Blood pressure reduction using antihypertensive agents reduces cardiovascular morbidity and mortality in patients with hypertension, as well as in non-hypertensive patients with several cardiovascular risk factors. Lowering of blood pressure seems to be the main mechanism through which these drugs exert their beneficial effects, since, through several mechanisms, they reduce the development, progression and complications of atherosclerosis, the underlying physiopathological basis of vascular disease and stroke. Numerous studies have shown that several families of antihypertensive drugs, mainly angiotensin converting enzyme (ACE) inhibitors and angiotensin II receptor antagonists, some calcium antagonists, certain beta-blockers, and alphaantagonists, have anti-atherosclerotic and antithrombotic effects that are independent of blood pressure reduction. The effects on endothelial factors, oxidative stress, the process of vascular inflammation, and fibrinolytic balance are some of the main anti-atherosclerotic mechanisms of the above-mentioned antihypertensive agents.

El Texto completo está disponible en PDF
Bibliografía
[1.]
J.A. Gold, P.S. Rahko.
ACE inhibitors versus. angiotensin II receptor blockers in acute myocardial infarction and heart failure.
WMJ, 103 (2004), pp. 71-72
[2.]
A. Mahmud, J. Feely.
Effect of angiotensin ii receptor blockade on arterial stiffness: beyond blood pressure reduction.
Am J Hypertens, 15 (2002), pp. 1092-1095
[3.]
V. Agrawal, G. Manohar, R.R. Kasliwal.
Angiotensin II receptor blockers: current perspective.
J Assoc Physicians India, 51 (2003), pp. 706-713
[4.]
G.B. Mancini, G.C. Henry, C. Macaya, B.J. O’Neill, A.L. Pucillo, R.G. Carere, et al.
Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study.
Circulation, 94 (1996), pp. 258-265
[5.]
M.P. Oubiña, N. De las Heras, E. Cediel, D. Sanz-Rosa, P. Aragoncillo, C. Díaz, et al.
Synergistic effect of angiotensin-converting enzyme (ACE) and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibition on inflammatory markers in atherosclerotic rabbits.
Clin Sci (Lond), 105 (2003), pp. 655-662
[6.]
A. Prasad, J.P. Halcox, M.A. Waclawiw, A.A. Quyyumi.
Angiotensin type 1 receptor antagonism reverses abnormal coronary vasomotion in atherosclerosis.
J Am Coll Cardiol, 38 (2001), pp. 1089-1095
[7.]
R. Maeso, E. Rodrigo, R. Muñoz-García, J. Navarro-Cid, L.M. Ruilope, V. Cachofeiro, et al.
Factors involved in the effects of losartan on endothelial dysfunction induced by aging in SHR.
Kidney Int Suppl, 54 (1998), pp. S30-S35
[8.]
E. Cediel, D. Sanz-Rosa, M.P. Oubiña, N. De las Heras, F.R. González Pacheco, et al.
Effect of AT1 receptor blockade on hepatic redox status in SHR: possible relevance for endothelial function?.
Am J Physiol Regul Integr Comp Physiol, 285 (2003), pp. R674-R681
[9.]
A. Warnholtz, G. Nickenig, E. Schulz, R. Macharzina, J.H. Brasen, M. Skatchkov, et al.
Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system.
Circulation, 99 (1999), pp. 2027-2033
[10.]
Münzel T, Just H, Harrison DG. The physiology and pathophysiology of the nitric oxide/superoxide system. Vascular endothelium: physiology, pathology and therapeutic options. Stuttgart: Born GVR, Schwartz CJ, editors; 1997;205-20.
[11.]
M. Ruiz-Ortega, O. Lorenzo, Y. Suzuki, M. Ruperez, J. Egido.
Proinflamatory actions of angiotensins.
Curr Opin Nephrol Hypertens, 10 (2001), pp. 321-329
[12]
E. Lonn, S. Yusuf, V. Dzavik, C. Doris, Q. Yi, S. Smith, et al.
SECURE Investigators. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE).
Circulation, 103 (2001), pp. 919-925
[13.]
S. Hope, P. Brecher, A.V. Chobanian.
Comparison of the effects of AT1 receptor blockade and angiotensin converting enzyme inhibition on atherosclerosis.
Am J Hypertens, 12 (1999), pp. 28-34
[14.]
N. De las Heras, P. Aragoncillo, R. Maeso, S. Vázquez-Pérez, J. Navarro-Cid, M. De Gasparo, et al.
AT1 receptor antagonism reduces endothelial dysfunction and intimal thickening in atherosclerotic rabbits.
Hypertension, 34 (1999), pp. 969-975
[15.]
K. Arakawa.
Pressure, platelets, and plaque: the central role of angiotensin II in cardiovascular pathology.
Am J Cardiol, 87 (2001), pp. C1-C2
[16.]
B. Schieffer, C. Bunte, J. Witte, K. Hoeper, R.H. Boger, E. Schwedhelm, et al.
Comparative effects of AT1-antagonism and angiotensin converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease.
J Am Coll Cardiol, 44 (2004), pp. 362-368
[17.]
N. De Las Heras, E. Cediel, M.P. Oubina, P. Aragoncillo, D. Sanz-Rosa, V. Lahera, et al.
Comparison between the effects of mixed dyslipidaemia and hypercholesterolaemia on endothelial function, atherosclerotic lesions and fibrinolysis in rabbits.
Clin Sci (Lond), 104 (2003), pp. 357-365
[18.]
J. Yoshida, K. Yamamoto, T. Mano, Y. Sakata, N. Nishikawa, M. Nishio, et al.
AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure.
Hypertension, 43 (2004), pp. 686-691
[19.]
D. Waters, J. Lesperance.
Calcium channel blockers and coronary atherosclerosis: from the rabbit to the real world.
Am Heart J, 128 (1994), pp. 1309-1316
[20.]
P. Theroux, Y. Taeymans, D.D. Waters.
Calcium antagonists. Clinical use in the treatment of angina.
[21.]
C.J. Pepine.
The role of calcium antagonists in ischaemic heart disease.
Eur Heart J, 16 (1995), pp. H19-H24
[22.]
L.H. Block, H. Matthys, L.R. Emmons, A. Perruchoud, P. Erne, M. Roth.
Ca(2+)-channel blockers modulate expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and low density lipoprotein receptor genes stimulated by platelet-derived growth factor.
Proc Natl Acad Sci USA, 88 (1991), pp. 9041-9045
[23.]
O. Stein, E. Leitersdorf, Y. Stein.
Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture.
Arteriosclerosis, 5 (1985), pp. 35-44
[24.]
I.T. Mak, P. Boehme, W.B. Weglicki.
Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels.
Circ Res, 70 (1992), pp. 1099-1103
[25.]
O.R. Etingin, D.P. Hajjar.
Calcium channel blockers enhance cholesteryl ester hydrolysis and decrease total cholesterol accumulation in human aortic tissue.
Circ Res, 1 (1990), pp. 185-190
[26.]
A. Daugherty, D.L. Rateri, G. Schonfeld, B.E. Sobel.
Inhibition of cholesteryl ester deposition in macrophages by calcium entry blockers: an effect dissociable from calcium entry blockade.
Br J Pharmacol, 91 (1987), pp. 113-118
[27.]
R.H. Becker, W. Linz, G. Wiemer, M. Nordlander.
Low-dose felodipine treatment attenuates endothelial dysfunction in rabbits fed an atherogenic diet.
J Cardiovasc Pharmacol, 18 (1991), pp. S36-S41
[28.]
R.P. Mason, P. Marche, T.H. Hintze.
Novel vascular biology of thir dgeneration L-type calcium channel antagonists: ancillary actions of amlodipine.
Arterioscler Thromb Vasc Biol, 23 (2003), pp. 2155-2163
[29.]
X-P. Zhang, S. Mital, T.H. Hintze.
Angiotensin AT2 and AT4 receptor blockade prevents amlodipine and its R+ enantiomer stimulated endothelial nitric oxide production.
Circulation, 104 (2001), pp. II33
[30.]
R. Berkels, G. Egink, T.A. Marsen, H. Bartels, R. Roesen, W. Klaus.
Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms.
Hypertension, 37 (2001), pp. 240-245
[31.]
M.J. Berridge.
Calcium signalling and cell proliferation.
Bioessays, 17 (1995), pp. 491
[32.]
C.L. Jackson, S.M. Schwartz.
Pharmacology of smooth muscle cell replication.
Hypertension, 20 (1992), pp. 713-736
[33.]
H.F. McMurray, S.B. Chahwala.
Amlodipine exerts a potent antimigrational effect on aortic smooth muscle cells in culture.
J Cardiovasc Pharmacol, 20 (1992), pp. S54-S56
[34.]
Y. Ko, G. Totzke, G.H. Graack, F.J. Heidgen, M.K. Meyer zu Brickwedde, R. Dusing, et al.
Action of dihydropyridine calcium antagonists on early growth response gene expression and cell growth in vascular smooth muscle cells.
J Hypertens, 11 (1993), pp. 1171-1178
[35.]
R. Alam, S. Kataoka, S. Alam, F. Yatsu.
Inhibition of vascular smooth muscle cell proliferation by the calcium antagonist clentiazem: role of protein kinase C.
Atherosclerosis, 126 (1996), pp. 207-219
[36.]
T.C. Chou, C.Y. Li, M.H. Yen, Y.A. Ding.
Antiplatelet effect of amlodipine: a possible mechanism through a nitric oxide-mediated process.
Biochem Pharmacol, 58 (1999), pp. 1657-1663
[37.]
P.G. Hugenholtz, R. Michels, P.W. Serruys, M.L. Simoons.
Treatment of unstable angina with emphasis on calcium antagonists.
G Ital Cardiol, 14 (1984), pp. 917-926
[38.]
J.R. Kaplan, K. Pettersson, S.B. Manuck, G. Olsson.
Role of sympathoadrenal medullary activation in the initiation and progression of atherosclerosis.
Circulation, 6 (1991), pp. 23-32
VI
[39.]
M.B. Khamar, P.K. Bhatt N.
Serum lipid profile and timolol gel.
J Indian Med Assoc, 100 (2004), pp. 620-621
[40.]
E. Donetti, M.R. Soma, L. Barberi, R. Paoletti, R. Fumagalli, P. Roma, et al.
Dual effects of the antioxidant agents probucol and carvedilol on proliferative and fatty lesions in hypercholesterolemic rabbits.
Atherosclerosis, 141 (1998), pp. 45-51
[41.]
H. Yoshida, M. Suzukawa, T. Ishikawa, et al.
Effects of beta-blockers on HMG CoA reductase and LDL receptor activity in cultured human skin fibroblasts.
Cardiovasc Drugs Ther, 10 (1996), pp. 67-74
[42.]
H. Holzgreve, R. Nakov, K. Beck, H.U. Janka.
Antihypertensive therapy with verapamil SR plus trandolapril versus atenolol plus chlorthalidone on glycemic control.
Am J Hypertens, 16 (2003), pp. 381-386
[43.]
G.L. Bakris, V. Fonseca, R.E. Katholi, J.B. McGill, F.H. Messerli, R.A. Phillips, et al.
GEMINI Investigators. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial.
JAMA, 292 (2004), pp. 2227-2236
[44.]
W. Meyer-Sabellek, K-L. Schulte, A. Distler, R. Gotzen.
Circadian antihypertensive profile of carvedilol.
J Cardiovasc Pharmacol, 10 (1987), pp. 119-123
[45.]
P. Lund-Johansen, P. Omvik.
The role of multiple action agents in hypertension.
Eur J Clin Pharmacol, 38 (1990), pp. 89-95
[46.]
S. Novo, A. Pinto, D. Galati, A. Giannola, G. Forte, A. Strano.
Effects of chronic administration of selective betablockers on peripheral circulation of the lower limbs in patients with essential hypertension.
Int Angiol, 4 (1985), pp. 229-234
[47.]
B. Hedblad, J. Wikstrand, L. Janzon, H. Wedel, G. Berglund.
Lowdose metoprolol CR/XL and fluvastatin Slow Progression of Carotid Intima-Media Thickness Main Results From the b-Blocker Cholesterol-Lowering Asymptomatic Plaque Study BCAPS.
Circulation, 103 (2001), pp. 1721-1726
[48.]
J. Wikstrand, G. Berglund, B. Hedblad, J. Hulthe.
Antiatherosclerotic effects of beta-blockers.
Am J Cardiol, (2003), pp. H25-H29
[49.]
O. Wiklund, J. Hulthe, J. Wikstrand, C. Schmidt, S.O. Olofsson, G. Bondjers.
Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study.
Stroke, 33 (2002), pp. 572-577
[50.]
K. Pettersson, G. Hansson, J.A. Bjorkman, B. Ablad.
Prostacyclin synthesis in relation to sympathoadrenal activation. Effects of beta-blockade.
Circulation, 84 (1991), pp. VI38-VI43
[51.]
A. Kuroedov, F. Cosentino, T.F. Luscher.
Pharmacological mechanisms of clinically favorable properties of a selective beta1-adrenoceptor antagonist, nebivolol.
Cardiovasc Drug Rev, 22 (2004), pp. 155-168
[52.]
G.Z. Feuerstein, R.R. Ruffolo Jr.
Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection.
Eur Heart J, 16 (1995), pp. 38-42
[53.]
P.J. Oliveira, J.A. Bjork, M.S. Santos, R.L. Leino, M.K. Froberg, A.J. Moreno, et al.
Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity.
Toxicol Appl Pharmacol, 200 (2004), pp. 159-168
[54.]
A. Zanchetti.
Clinical pharmacodynamics of nebivolol: new evidence of nitric oxide-mediated vasodilating activity and peculiar haemodynamic properties in hypertensive patients.
Blood Press Suppl, 1 (2004), pp. 17-32
[55.]
B.R. Brehm, D. Bertsch, J. Von Fallois, S.C. Wolf.
Beta-blockers of the third generation inhibit endothelin-1 liberation, mRNA production and proliferation of human coronary smooth muscle and endothelial cells.
J Cardiovasc Pharmacol, 36 (2000), pp. S401-S403
[56.]
L.J. Ignarro, M. Sisodia, K. Trinh, M. Sisodia, G.M. Buga.
Nebivolol inhibits vascular smooth muscle cell proliferation by mechanisms involving nitric oxide but not cyclic GMP.
Nitric Oxide, 7 (2002), pp. 83-90
[57.]
J.W. Chen, F.Y. Lin, Y.H. Chen, T.C. Wu, Y.L. Chen, S.J. Lin.
Carvedilol reduced TNF-alpha-stimulated endothelial adhesiveness to human MNCs.
Arterioscler Thromb Vasc Biol, 24 (2004), pp. 2075-8158
[58.]
S.P. Yang, L.J. Ho, Y.L. Lin, S.M. Cheng, T.P. Tsao, D.M. Chang, et al.
Carvedilol, a new antioxidative beta-blocker, blocks in vitro human peripheral blood T cell activation by downregulating NF-kappaB activity.
Cardiovasc Res, 59 (2003), pp. 776-787
[59.]
S.P. Yang, L.J. Ho, S.M. Cheng, Y.L. Hsu, T.P. Tsao, D.M. Chang, et al.
Carvedilol differentially regulates cytokine production from activated human peripheral blood mononuclear cells.
Cardiovasc Drugs Ther, 18 (2004), pp. 183-188
[60.]
J.A. Gasser, D.J. Betterridge.
Comparison of the effects of carvedilol, propranolol, and verapamil on in vitro platelet function in healthy volunteers.
J Cardiovasc Pharmacol, 18 (1991), pp. S29-34
[61.]
M.C. Kowala, J.J. Nunnari, S.K. Durham, R.J. Nicolosi.
Doxazosin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters.
Atherosclerosis, 91 (1991), pp. 35-49
[62.]
U. Kintscher, D. Kon, S. Wakino, S. Goetze, K. Graf, E. Fleck, et al.
Doxazosin inhibits monocyte chemotactic protein 1-directed migration of human monocytes.
J Cardiovasc Pharmacol, 37 (2001), pp. 532-539
[63.]
A.C. Swindell, M.N. Krupp, T.M. Twomey, J.A. Reynolds, C.O. Chichester.
Effects of doxazosin on atherosclerosis in cholesterol-fed rabbits.
Atherosclerosis, 99 (1993), pp. 195-206
[64.]
N. Hoogerbrugge, E. De Groot, L.H. De Heide, M.A. De Ridder, J.C. Birkenhageri, T. Stijnen, et al.
Doxazosin and hydrochlorothiazide equally affect arterial wall thickness in hypertensive males with hypercholesterolaemia (the DAPHNE study). Doxazosin Atherosclerosis Progression Study in Hypertensives in the Netherlands.
Neth J Med, 60 (2002), pp. 354-361
[65.]
N. Komai, M. Ohishi, A. Moriguchi, Y. Yanagitani, T. Jinno, K. Matsumoto, et al.
Low-dose doxazosin improved aortic stiffness and endothelial dysfunction as measured by noninvasive evaluation.
Hypertens Res, 25 (2002), pp. 5-10
[66.]
C.H. Courtney, D.R. McCance, A.B. Atkinson, J. Bassett, C.N. Ennis, B. Sheridan, et al.
Effect of the alpha-adrenergic blocker, doxazosin, on endothelial function and insulin action.
Metabolism, 52 (2003), pp. 1147-1152
Copyright © 2005. Sociedad Española de Arteriosclerosis y Elsevier España S.L.
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos