metricas
covid
Buscar en
Endocrinología, Diabetes y Nutrición (English ed.)
Toda la web
Inicio Endocrinología, Diabetes y Nutrición (English ed.) Impact of the presence and type of cardiovascular disease on the risk of mortali...
Información de la revista
Vol. 71. Núm. 7.
Páginas 278-289 (agosto - septiembre 2024)
Visitas
136
Vol. 71. Núm. 7.
Páginas 278-289 (agosto - septiembre 2024)
Original article
Acceso a texto completo
Impact of the presence and type of cardiovascular disease on the risk of mortality in type 2 diabetic patients: The DIABET-IC trial
Influencia de la presencia y tipo de enfermedad cardiovascular sobre el riesgo de mortalidad de los pacientes con diabetes tipo 2: estudio DIABET-IC
Visitas
136
José Antonio Gimeno Ornaa,
Autor para correspondencia
jagimeno@salud.aragon.es

Corresponding author.
, Ana Belén Mañas Martíneza, Luis Rodríguez Padialb, Manuel Anguita Sánchezc, Vivencio Barriosd, Javier Muñiz Garcíae, Antonio Pérez Pérezf, on behalf of DIABET-IC researchers
a Servicio de Endocrinología y Nutrición, HCU Lozano Blesa, Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
b Servicio de Cardiología, Complejo Hospitalario de Toledo, Toledo, Spain
c Servicio de Cardiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica, Universidad de Córdoba, CIBER Cardiovascular, Córdoba, Spain
d Servicio de Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
e Universidad da Coruña, Grupo de Investigación Cardiovascular, Departamento de Ciencias de la Salud e Instituto de Investigación Biomédica de A Coruña (INIBIC), CIBERCV, A Coruña, Spain
f Servicio de Endocrinología y Nutrición. Instituto de Investigación, Hospital de la Santa Creu i Sant Pau. Universidad Autónoma de Barcelona, CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Tablas (5)
Table 1. Cross-cardiovascular involvement among vascular territories.
Table 2. Characteristics of patients based on the initial presence of CVD.
Table 3. Initial characteristics of patients based on mortality prognosis with univariate Cox analysis for each variable.
Table 4. Initial characteristics of patients based on whether they died from cardiovascular causes with univariate Cox analysis for each variable.
Table 5. Incidence rates (IR) per 1000 patient-years for the overall and cardiovascular mortality.
Mostrar másMostrar menos
Material adicional (1)
Abstract
Introduction

All-cause mortality and cardiovascular mortality (CVM) risk can be very high in adults with type 2 diabetes mellitus (DM2) with previous cardiovascular disease (CVD). Our objective was to determine this risk among the different clinical spectrum of CVD.

Material and methods

The DIABET-IC trial is a multicenter, prospective, observational, and analytical study. Consecutive subjects with DM2 attending our outpatients’ clinics were recruited. Data on clinical features, lab test results, and echocardiographic measures were collected.

Patients were categorized depending on the presence and type of CVD: heart failure (HF), coronary artery disease (CAD), cerebrovascular disease (CVD) and peripheral artery disease (PAD).

All-cause mortality and CVM were the dependent variables analyzed. Mortality rate was expressed as deaths per 1000 patients-year. Cox proportional hazards regressions models were used to establish the mortality risk associated with every type of CVD.

Results

We studied a total of 1246 patients (mean age, 6.3 (SD, 9.9) years; 31.6%, female) with an initial prevalence of CVD of 59.3%. A total of 122 deaths (46 due to CVD) occurred at the 2.6-year follow-up. All-cause and MCV rates associated with the presence of PAD (85.6/1000 and 33.6/1000, respectively) and HF (72.9/1000 and 28.7/1000 respectively) were the most elevated of all.

In multivariate analysis, HF increased all-cause mortality risk (HR, 1.63; CI 95% 1.03–2.58; P=.037) and the risk of CVM (HR, 3.41; 95% CI, 1.68–6.93; P=.001).

Conclusions

Mortality among DM2 patients is highly increased in the presence of HF and PAD. This justifies the screening of these conditions to intensify therapeutic strategies.

Keywords:
Type 2 diabetes
Mortality
Cardiovascular disease
Resumen
Introducción

El riesgo de mortalidad total y de mortalidad cardiovascular (MCV) de los pacientes con diabetes tipo 2 (DM2) puede ser muy elevado ante la existencia de enfermedad cardiovascular (ECV). Nuestro objetivo fue cuantificar este riesgo considerando las diferentes manifestaciones de ECV.

Materiales y métodos

El estudio DIABET-IC es un estudio multicéntrico, observacional, prospectivo y analítico, con reclutamiento consecutivo de pacientes con DM2 procedentes de consultas externas hospitalarias.

Se recogieron variables clínicas, analíticas y ecocardiográficas, con clasificación de los pacientes en dependencia de la presencia y tipo de ECV: insuficiencia cardiaca (IC), enfermedad arterial coronaria (EACo), enfermedad arterial cerebrovascular (EACe) y enfermedad arterial periférica (EAPe).

Las variables dependientes analizadas fueron mortalidad total y MCV. Se calcularon las tasas por cada 1000 pacientes-año y se realizaron modelos de Cox para determinar el riesgo de mortalidad asociado a cada tipo de ECV.

Resultados

Se incluyeron 1246 pacientes de 67,3 (DE 9,9) años, 31,6% mujeres y con prevalencia inicial de ECV del 59,3%. Durante un seguimiento de 2,6 años, hubo 122 fallecimientos (46 cardiovasculares). Las tasas asociadas a existencia de EAPe (85,6/1000 mortalidad total y 33,6/1000 MCV) e IC (72,9/1000 mortalidad total y 28,7/1000 MCV) fueron las más elevadas.

En análisis multivariante, la IC aumentó el riesgo de mortalidad total (HR 1,63; IC 95% 1,03-2,58; p=0,037) y MCV (HR 3,41; IC 95% 1,68-6,93; p=0,001).

Conclusiones

La mortalidad de los pacientes con DM2 está incrementada, especialmente ante la existencia de IC y EAPe, lo que justifica su cribado para intensificar las medidas terapéuticas.

Palabras clave:
Diabetes tipo 2
Mortalidad
Enfermedad cardiovascular
Texto completo
Introduction

The presence of diabetes mellitus (DM) increases the risk of mortality.1–3 In a meta-analysis of 97 prospective studies conducted from 1961 through 2007 (Emerging Risk Factors Collaboration), of more than 12 million person-years at the follow-up, the risk of overall mortality and cardiovascular mortality (CVM) was significantly elevated in patients with DM.1 This was observed both in individuals without initial cardiovascular disease (CVD) (HR, 1.80 for overall mortality and HR, 2.32 for CVM), as well as in those with existing CVD (HR, 1.65 for overall mortality and HR, 1.89 for CVM). Data from the UK Biobank2 have demonstrated that, in the absence of prevalent CVD, patients with DM, in an analysis adjusted for other risk factors, have a 50% increased risk of mortality vs the population without DM; however, this risk multiplies by a factor of 3.6 up to 4.9 in the simultaneous presence of diabetes and various signs of CVD. A recent combined analysis from the Emerging Risk Factors Collaboration and the UK Biobank3 has shown that each decade of earlier DM diagnosis increases the risk of overall mortality by 14% and the risk of CVM by 19%.

Specifically, in type 2 DM (T2DM), the application of clinical trial results demonstrating the efficacy of glycemic control,4 blood pressure control,5 lipid control,6 and the simultaneous management of all vascular risk factors7 should have translated into improved patient prognosis.1 Although Data from the Swedish National Diabetes Register confirm a 21% reduction in overall mortality and a 46% reduction in CVM in T2DM patients from 1998 through 2014, this decrease is smaller vs the general population.8

It is necessary to gather updated data on the mortality of patients with diabetes, given the recent availability of glucose-lowering drugs (SGLT2 inhibitors [i-SGLT2] and GLP1 receptor agonists [GLP1-RA]) that can change the prognosis of CVD.9 Although it is widely known that the presence of atherosclerotic cardiovascular disease (ASCVD)10 and heart failure11 increases the risk of overall mortality and CVM, it is essential to quantify the increased risk conferred by each of these complications to effectively stratify patient risk. Identifying T2DM patient groups at the highest risk of death is a priority because, in these patients, an equal relative risk reduction will produce a greater absolute risk reduction, which has been demonstrated in a meta-analysis of i-SGLT2 and GLP1-RA trials, with CVM rates in the placebo groups ranging from 7 up to 125 per 1000 patient-years.12

Our hypothesis was that, at present, the mortality risk of T2DM patients would still be highly variable depending on their initial characteristics. Through the prospective follow-up of a cohort of T2DM patients from outpatient clinics of various Spanish hospitals, our objective was to evaluate the risk of mortality based on the presence and type of initial CVD. Additionally, we analyzed the prevalence of use and clinical efficacy in reducing mortality with the use of i-SGLT2 and GLP1-RA.

Materials and methodsDesign

The DIABET-IC trial was designed as a multicenter, observational, prospective, and analytical study jointly promoted by the Spanish Society of Diabetes and the Spanish Society of Cardiology. It was conducted in 58 hospitals across Spain, with the aim of evaluating the prevalence and incidence of heart failure, as well as the vital prognosis depending on the presence and type of CVD. The incidence data on heart failure will be presented in additional articles.

The planned design was observational and pragmatic, with patient follow-up in a routine clinical practice setting, without specific therapeutic prescription indications. The initial protocol included 1 initial visit and 3 follow-up visits. However, due to the COVID-19 pandemic, the protocol was changed to achieve, at least, the study closure visit in the largest possible number of patients.

The study was conducted following the principles set forth in the Declaration of Helsinki and was approved by Complejo Hospitalario de Toledo Ethics Committee on March 28th, 2018 (identification code 243). All patients signed their informed consent forms prior to their participation in the study.

Inclusion and exclusion criteria

Patients aged 18 years or older with, at least, a 1-year history of T2DM diagnosis according to the American Diabetes Association criteria13 prior to the inclusion visit were included. Patients with and without CVD could be recruited. Exclusion criteria were a diagnosis of T1DM, concomitant participation in any other clinical trial, inability to provide informed consent, stage 5 chronic kidney disease, and an estimated life expectancy of < 3 years due to comorbid conditions.

Patient recruitment was completed consecutively and balanced between in-hospital outpatient endocrinology and cardiology clinics. One endocrinologist and 1 cardiologist jointly evaluated the patients in each participant center.

The initially calculated sample size was 2400 patients to achieve an estimation of the prevalence of heart failure with a precision of ± 1.4%, with a 95% confidence level. For this purpose, 60 hospitals were originally invited to participate, with the first 40 patients from each hospital meeting the inclusion criteria being selected (20 from endocrinology outpatient clinics and 20 from cardiology outpatient clinics).

Dependent variable (endpoint)

Each investigator documented, in case of occurrence, both mortality data and whether death was of cardiovascular origin by consulting the patient’s health history. CVM was considered if due to acute coronary syndrome, heart failure, arrhythmic or sudden death, arterial aneurysm rupture, or stroke.

Variables collected at the initial visit

  • 1

    Demographic variables: age and gender.

  • 2

    Comorbidities and vascular risk factors:

  • -

    Smoking status classified as current smoker, former smoker, and non-smoker (later grouped into current smoker or non-current smoker).

  • -

    Hypertension (HTN), defined as confirmed systolic blood pressure (SBP) ≥ 140mmHg, confirmed diastolic blood pressure (DBP) ≥ 90mmHg, or use of antihypertensives.

  • -

    Dyslipidemia, defined as the use of lipid-lowering agents or total cholesterol levels > 240mg/dL and/or LDL cholesterol > 160mg/dL and/or triglycerides > 200mg/dL and/or HDL cholesterol < 40mg/dL in men vs < 50mg/dL in women.

  • -

    Cancer diagnosis.

  • -

    Charlson comorbidity index.

  • 3

    Initial presence of CVD, defined as the documentation of 1 or more of the following conditions:

  • -

    Heart failure based on diagnostic criteria from the European Society of Cardiology14 and categorized as heart failure with reduced ejection fraction (HFrEF), with mid-range ejection fraction (HFmEF), or with preserved ejection fraction (HFpEF).

  • -

    Atherosclerotic cardiovascular disease (ASCVD): presence of coronary artery disease and/or cerebrovascular disease and/or peripheral artery disease. An additional ordinal variable was created with 3 categories: no involvement, involvement of 1 territory, and involvement of > 1 vascular territory.

  • -

    Coronary artery disease (CAD): documentation of acute myocardial infarction, acute coronary syndrome, coronary revascularization, or coronary stenosis > 50%.

  • -

    Cerebrovascular disease (CeVD): documentation of ischemic or hemorrhagic stroke or carotid stenosis > 50%.

  • -

    Peripheral artery disease (PAD): documentation of lower limb artery disease.

  • 4

    DM-related history: course of the disease, presence of retinopathy, presence of chronic kidney disease (CKD).

  • 5

    Physical examination: SBP, DBP, weight (kg), height (meters), body mass index (BMI) expressed in kg/m2, waist circumference (cm).

  • 6

    Lab test results (obtained at each hospital using routine methods): glucose (mg/dL), HbA1c (%), lipid profile including cholesterol, triglycerides, LDL-C, HDL-C, and non-HDL cholesterol (total cholesterol - HDL-C) expressed in mg/dL, estimated glomerular filtration rate (eGFR) using the CKD-EPI formula in mL/min/1.73m2, urinary albumin excretion (UAE) in mg/g of creatinine, hemoglobin (g/dL).

  • 7

    Electrocardiogram, noting the presence of atrial fibrillation (AF).

  • 8

    NT-proBNP and echocardiogram, with calculation of left ventricular ejection fraction (LVEF) to determine the presence and classification of heart failure.14 Patients with heart failure were subsequently grouped depending on whether LVEF was < 40% or ≥ 40%.

  • 9

    Drugs administered at the time of the initial visit completion.

Statistical methods

Quantitative variables were expressed as mean and standard deviation (SD) or the median and interquartile range. Qualitative variables were expressed based on their frequency distribution (%).

For the comparison of quantitative variables, the Student t-test for independent samples or the ANOVA test were used, with non-parametric tests being performed if normality assumptions were not met. The comparison of qualitative variables was performed using the chi-square test or Fisher’s exact test.

Patients were followed until their death, study withdrawal, or the final study closure visit scheduled for June 2022. Mortality incidence rates (IR) are expressed per 1000 patient-years. Kaplan-Meier survival curves were created, and mortality rates were compared based on the initial patient characteristics using the log-rank test.

The increased risk of overall mortality and CVM based on initial presence, type of CVD, and number of damaged vascular territories (coded as none, 1, or > 1) was evaluated using univariate and multivariate Cox regression models. Hazard ratios (HR) with their corresponding 95% confidence intervals (CI) are presented. For the statistical analysis, HFmEF and HFpEF categories were grouped due to the limited number of subjects. Multivariate adjustment was performed using statistical criteria (significance of variables in univariate analysis) and their clinical relevance.

P values<0.05 were considered statistically significant.

Results

From May 2018 through March 2020, a total of 1543 patients were evaluated, with the participation of 110 investigators from 58 Spanish hospitals. This analysis includes the 1246 patients for whom mortality information was available at the study closure visit.

The participants’ mean age was 67.3 years (SD, 9.9), being 31.6%, women. The initial prevalence of total CVD was 59.3%, with the following distribution: heart failure, 39.4% (HFrEF, 17.3%; HFmEF, 8.1%; and HFpEF, 14%), ASCVD, 49.9% (with 10.9% of patients having > 1 vascular territory affected by atherosclerosis); CAD, 43.1%; CeVD, 8.2%; and PAD, 10.8%. Table 1 shows the percentage of patients with a specific type of CVD who simultaneously have another type of CVD. Notably, among patients with PAD, almost 70% had CAD, 16% had CeVD, and 55% had heart failure.

Table 1.

Cross-cardiovascular involvement among vascular territories.

  CAD (n=537)CeVD (n=102)PAD (n=135)HF with EF<40% (n=215)HF with EF40% (n=275)
 
CAD      52  50.98  94  69.63  133  61.86  124  45.09 
CeVD  52  9.68      22  16.3  24  11.16  26  9.45 
PAD  94  17.5  22  21.57      33  15.35  41  14.91 
HF with EF<40%  133  24.77  24  23.53  33  24.44         
HF with EF40%  124  23.09  26  25.49  41  30.37         

CeVD, cerebrovascular disease; CAD, coronary artery disease; PAD, peripheral artery disease; EF, ejection fraction; HF, heart failure; %, percentage of patients with a specific type of CVD who simultaneously have another type of CVD.

The overall characteristics of the patients and, also, based on whether they showed any signs of CVD are shown in Table 2. As can be seen, patients with CVD were older, had a higher Charlson score, a lower proportion of women, lower BMI, lower eGFR with higher UAE, and higher NT-proBNP levels, along with lower LVEF. Patients with CVD had better control of vascular risk factors, with a lower proportion of active smokers and lower BP and lipid levels (LDL-C and non-HDL cholesterol), which may be justified by the greater use of antihypertensives and lipid-lowering agents. However, only 46.3% of participants with CVD had HbA1c<7%, 43.8% had SBP<130mmHg, and 30.8% had non-HDL cholesterol<85mg/dL. In patients with CVD, there a high use of statins was reported (90.3%), yet the use of ezetimibe (22.3%) and PCSK9 inhibitors (1.3%) was low, despite a high proportion of patients not meeting lipid therapeutic goals. Regarding glucose-lowering treatment, 39.4% of patients with CVD were on i-SGLT2 and 12% on GLP1-RA.

Table 2.

Characteristics of patients based on the initial presence of CVD.

  Overall groupNo CVDCVD 
Quantitative variables  Mean  SD  Mean  SD  Mean  SD 
Age (years)  1246  67.35  9.92  507  65.41  10.18  739  68.69  9.51  < 0.001 
Charlson index (points)  1246  1.95  1.01  507  1.55  0.82  739  2.23  1.03  < 0.001 
SBP (mmHg)  1243  134.59  19.37  506  138.43  19.57  737  131.95  18.80  < 0.001 
DBP (mmHg)  1246  75.42  11.40  506  77.72  11.78  737  73.84  10.88  < 0.001 
BMI (kg/m²)  1231  30.30  5.29  504  30.97  5.58  727  29.84  5.03  < 0.001 
Waist circumference (cm)  1090  104.73  14.34  456  105.42  13.95  634  104.23  14.61  0.261 
Baseline LVEF values (%)  1174  54.74  13.68  451  61.14  9.64  723  50.74  14.30  < 0.001 
NT-proBNP (pg/mL)  952  982  2464  351  468  1268  601  1281  2904  < 0.001 
Hemoglobin (g/dL)  1229  14.04  1.78  497  14.20  1.70  732  13.93  1.83  0.024 
eGFR (mL/min/1.73 m21237  73.43  22.88  505  79.75  22.45  732  69.08  22.15  < 0.001 
UAE (mg/g of creatinine)  1072  77.75  302.25  444  53.20  166.40  628  95.10  368.40  0.117 
LDL-C (mg/dL)  1209  79.91  29.90  489  88.77  29.25  720  73.88  28.84  < 0.001 
Triglycerides (mg/dL)  1235  152.28  85.59  504  150.12  84.17  731  153.77  86.57  0.232 
HDL-C (mg/dL)  1214  44.05  12.36  491  47.55  12.71  723  41.67  11.52  < 0.001 
Non-HDL cholesterol (mg/dL)  1213  108.72  33.72  491  116.99  33.16  722  103.09  32.96  < 0.001 
Fasting glucose (mg/dL)  1239  141.18  46.39  503  141.33  46.42  736  141.07  46.40  0.933 
HbA1c (%)  1227  7.31  1.31  501  7.39  1.42  726  7.26  1.22  0.330 
History of diabetes (years)  1240  14.22  11.41  505  13.83  9.59  735  14.49  12.52  0.516 
  Overall groupNo CVDCVD 
Quantitative variables 
Sex (% female)  394  31.62  217  42.80  177  23.95  < 0.001 
HbA1c < 7% (%)  555  45.23  219  43.71  336  46.28  < 0.001 
SBP<130mmHg (%)  476  38.29  153  30.24  323  43.83  < 0.001 
Non-HDL cholesterol (mg/dL)               
< 85  299  24.65  77  15.68  222  30.75  < 0.001 
85–99  251  20.69  93  18.94  158  21.88   
100–130  378  31.16  170  34.62  208  28.81   
> 130  285  23.50  151  30.75  134  18.56   
Current smoker (%)  127  10.19  56  11.05  71  9.61  < 0.001 
CKD stage (%)               
Stage 1 (≥ 90)  34  8.79  17  15.18  17  6.18  < 0.001 
Stage 2 (60–89)  103  26.61  40  35.71  63  22.91   
Stage 3 (30–59)  221  57.11  50  44.64  171  62.18   
Stage 4 (15–29)  25  6.46  4.46  20  7.27   
Stage 5 (<15)  1.03  0.00  1.45   
UAE (%)               
UAE < 30  774  72.20  340  76.58  434  69.11  0.021 
UAE = [30, 300)  247  23.04  84  18.92  163  25.96   
UAE ≥ 300  51  4.76  20  4.50  31  4.94   
Sulfonylurea (%)  116  9.31  61  12.03  55  7.44  0.006 
Metformin (%)  917  73.60  389  76.73  528  71.45  0.038 
i-SGLT2 (%)  475  38.12  184  36.29  291  39.38  0.271 
GLP1-RA (%)  195  15.65  106  20.91  89  12.04  < 0.001 
i-DPP4 (%)  422  33.87  165  32.54  257  34.78  0.413 
Pioglitazone (%)  18  1.44  12  2.37  0.81  0.024 
Insulin (%)  525  42.13  242  47.73  283  38.29  < 0.001 
Mineralocorticoid antagonists (%)  279  22.39  45  8.88  234  31.66  < 0.001 
ACEi (%)  415  33.31  139  27.42  276  37.35  < 0.001 
ARBs (%)  436  34.99  199  39.25  237  32.07  0.009 
Sacubitril/Valsartan (%)  147  11.77  20  3.94  127  17.19  < 0.001 
Beta blockers (%)  751  60.27  177  34.91  574  77.67  < 0.001 
Statins (%)  1,049  84.19  382  75.35  667  90.26  < 0.001 
Anti-PCSK9 (%)  12  0.96  0.39  10  1.35  0.089 
Ezetimibe (%)  219  17.58  54  10.65  165  22.33  < 0.001 
Antiplatelet agents (%)  659  52.89  177  34.91  482  65.22  < 0.001 

UAE, urinary albumin excretion; CKD, chronic kidney disease; FEVI, left ventricular ejection fraction; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; eGFR, estimated glomerular filtration rate.

During a mean follow-up of 2.6 years, a total of 122 deaths were reported, 46 of which were due to cardiovascular causes. The characteristics of the participants categorized into those who died or did not and into those who died or did not from cardiovascular causes are summarized in Tables 3 and 4. Patients who died were older, had a higher Charlson score, a higher prevalence of cancer diagnosis, higher UAE levels, and lower BP, BMI, HDL-C, hemoglobin, eGFR, and LVEF levels, as well as higher prevalences of microvascular and macrovascular complications. The pattern was similar in those whose cause of death was cardiovascular.

Table 3.

Initial characteristics of patients based on mortality prognosis with univariate Cox analysis for each variable.

Overall mortality (n=122)  NoYesUnivariate analysis
Quantitative variables  Mean  SD  Mean  SD    HR  95% CI
Age (years)  1093  66.68  9.74  122  74.34  7.80  < 0.001  1.096  1.073  1.121  < 0.001 
Charlson Index (points)  1093  1.86  0.95  122  2.75  1.17  < 0.001  1.96  1.700  2.260  < 0.001 
SBP (mmHg)  1090  135.36  19.15  122  127.94  20.43  < 0.001  0.980  0.970  0.990  < 0.001 
DBP (mmHg)  1090  76.09  11.36  122  69.43  10.08  < 0.001  0.950  0.935  0.966  < 0.001 
BMI (kg/m21081  30.37  5.24  119  28.87  5.12  0.003  0.947  0.911  0.984  0.005 
Waist circumference over iliac crest (cm)  951  104.81  13.81  110  102.43  17.88  0.085  0.989  0.976  1.003  0.118 
Baseline LVEF values (%)  1026  55.34  13.31  118  48.79  15.20  < 0.001  0.972  0.960  0.983  < 0.001 
Hemoglobin (g/dL)  1077  14.10  1.76  122  13.30  1.72  < 0.001  0.789  0.717  0.869  < 0.001 
eGFR (mL/min/1.73m21084  75.29  22.02  122  56.17  22.49  < 0.001  0.964  0.956  0.972  < 0.001 
UAE (mg/g of creatinine)  940  64.59  235.10  103  174.68  624.20  < 0.001  1.001  1.000  1.001  < 0.001 
LDL-C (mg/dL)  1060  80.02  29.90  117  75.76  27.37  0.205  0.996  0.989  1.002  0.186 
Triglycerides (mg/dL)  1085  152.70  87.40  119  148.18  74.84  0.928  0.999  0.997  1.002  0.625 
HDL-C (mg/dL)  1064  44.33  12.40  118  41.24  11.80  0.004  0.979  0.963  0.995  0.011 
Non-HDL cholesterol (total - HDL) (mg/dL)  1063  108.90  33.72  118  103.22  31.25  0.105  0.995  0.990  1.001  0.107 
Fasting glucose (mg/dL)  1086  140.14  44.51  122  146.36  60.31  0.530  1.003  0.999  1.006  0.139 
HbA1c (%)  1077  7.29  1.30  118  7.36  1.28  0.444  1.042  0.913  1.189  0.544 
History of diabetes (years)  1087  14.17  11.44  122  14.42  11.38  0.553  1.002  0.987  1.018  0.796 
Overall mortality (n=122)  NoYesHR  95%CI
Qualitative variable       
Sex (% female)  349  31.93  35  28.69  0.465  0.893  0.603  1.322  0.572 
HTN (%)  884  80.88  106  86.89  0.105  1.484  0.877  2.510  0.141 
Dyslipidemia (%)  886  81.06  99  81.15  0.982  0.918  0.583  1.446  0.712 
Smoking (% current smoker)  108  9.88  13  10.66  0.643  1.124  0.614  2.055  0.705 
Cancer (%)  77  7.04  17  13.93  0.007  1.983  1.187  3.312  0.009 
Severe hypoglycemia in the last year (%)  23  2.10  2.46  0.797  1.325  0.421  4.168  0.631 
Retinopathy (%)  145  13.30  24  19.70  0.137  1.607  1.028  2.512  0.038 
i-SGLT2 (%)  435  39.80  28  22.95  < 0.001  0.473  0.310  0.722  0.001 
GLP1-RA (%)  185  16.93  3.28  < 0.001  0.177  0.065  0.479  0.001 
Insulin (%)  449  41.08  60  49.18  0.085  1.376  0.965  1.963  0.078 
Cardiovascular disease (%)  626  57.38  97  79.51  < 0.001  2.688  1.732  4.174  < 0.001 
Heart failure (%)  391  35.77  89  72.95  < 0.001  4.44  2.98  6.62  < 0.001 
Heart failure (%). The reference category is the absence of heart failure
Depressed LVEF (%)  173  15.89  39  31.97  < 0.001  4.332  2.723  6.892  < 0.001 
Intermediate LVEF (%)  80  7.35  15  12.30    3.491  1.896  6.429  < 0.001 
Preserved LVEF (%)  138  12.67  35  28.69    5.105  3.171  8.219  < 0.001 
Cerebrovascular disease (%)  82  7.51  18  14.75  0.006  2.057  1.247  3.394  0.005 
Peripheral artery disease (%)  104  9.52  28  22.95  < 0.001  2.631  1.725  4.013  < 0.001 
Coronary artery disease (%)  459  42.07  66  54.10  0.011  1.537  1.076  2.195  0.018 
Vascular territories affected (%)          < 0.001         
0 territories (%)  561  51.37  44  36.07    1 (Ref)       
1 territory (%)  425  38.92  52  42.62    1.471  0.984  2.199  0.060 
> 1 territory (%)  106  9.71  26  21.31    2.909  1.791  4.726  < 0.001 
Atrial fibrillation (%)  217  19.89  53  43.44  < 0.001  2.809  1.963  4.019  < 0.001 
CKD stage (%)          0.002         
Stage 1 (≥ 90)  30  9.62  6.15    1 (Ref)       
Stage 2 (60–89)  94  30.13  10.77    0.547  0.160  1.868  0.336 
Stage 3 (30–59)  169  54.17  44  67.69    1.690  0.607  4.704  0.315 
Stage 4 (15–29)  17  5.45  12.31    2.951  0.888  9.808  0.077 
Stage 5 (< 15)  0.64  3.08    5.298  0.968  28.992  0.055 
UAE (%)          0.067         
UAE < 30  687  73.09  68  66.02    1 (Ref)       
UAE = [30, 300)  215  22.87  26  25.24    1.244  0.791  1.956  0.344 
UAE ≥ 300  38  4.04  8.74    2.190  1.092  4.391  0.027 

UAE, urinary albumin excretion; CKD, chronic kidney disease; FEVI, left ventricular ejection fraction; HTN, arterial hypertension; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; eGFR, estimated glomerular filtration rate.

Table 4.

Initial characteristics of patients based on whether they died from cardiovascular causes with univariate Cox analysis for each variable.

Cardiovascular mortality (n=46)  NoYesUnivariate analysis
Quantitative variables  Mean  SD  Mean  SD    HR  95%CI
Age (years)  1169  67.22  9.81  46  73.30  8.63  < 0.001  1.08  1.04  1.12  < 0.001 
Charlson Index (points)  1169  1.93  1.00  46  2.63  1.12  0.021  1.81  1.43  2.29  < 0.001 
SBP (mmHg)  1166  134.92  19.23  46  126.96  22.35  0.006  0.98  0.96  0.99  0.005 
DBP (mmHg)  1166  75.68  11.32  46  68.67  11.89  < 0.001  0.94  0.92  0.97  < 0.001 
BMI (kg/m²)  1155  30.30  5.22  45  28.14  5.52  0.005  0.91  0.86  0.98  0.008 
Waist circumference over iliac crest (cm)  1016  104.76  14.19  45  99.91  15.91  0.026  0.98  0.96  1.00  0.025 
Baseline LVEF values (%)  1099  55.04  13.47  45  45.33  14.95  < 0.001  0.96  0.94  0.98  < 0.001 
Hemoglobin (g/dL)  1153  14.04  1.76  46  13.40  2.00  0.016  0.81  0.70  0.95  0.010 
eGFR (mL/min/1.73m21160  74.07  22.51  46  55.43  22.92  < 0.001  0.96  0.95  0.98  < 0.001 
UAE (mg/g of creatinine)  1003  74.37  299.40  40  102.97  272.10  0.150  1.00  1.00  1.00  0.470 
LDL-C (mg/dL)  1132  79.78  29.64  45  74.97  30.52  0.151  0.99  0.98  1.01  0.316 
Triglycerides (mg/dL)  1159  151.96  86.18  45  159.89  87.89  0.585  1.00  0.94  1.00  0.213 
HDL-C (mg/dL)  1137  44.19  12.43  45  39.88  9.77  0.022  0.97  0.94  1.00  0.021 
Non-HDL cholesterol (mg/dL)  1136  108.70  33.40  45  100.90  34.50  0.075  0.99  0.98  1.00  0.147 
Fasting glucose (mg/dL)  1162  139.97  45.37  46  161.09  64.11  0.002  1.01  1.00  1.01  0.001 
HbA1c (%)  1149  7.29  1.30  46  7.43  1.35  0.494  1.08  0.89  1.33  0.431 
History of diabetes (years)  1163  14.25  11.37  46  12.96  13.05  0.161  0.99  0.96  1.02  0.462 
Cardiovascular mortality (n=46)  NoYesHR  95% CI
Quantitative variables       
Sex (% female)  374  31.99  10  21.74  0.142  0.62  0.31  1.24  0.178 
HTN (%)  949  81.18  41  89.13  0.173  1.84  0.73  4.65  0.200 
Dyslipidemia (%)  946  80.92  39  84.78  0.512  1.19  0.53  2.66  0.677 
Smoking (% current smoker)  114  9.75  15.22  0.633  1.68  0.71  3.98  0.238 
Severe hypoglycemia (%)  26  2.22  0.00  0.307  0.00  0.00  0.00  0.996 
Retinopathy (%)  160  13.70  19.60  0.718  1.59  0.77  3.30  0.212 
i-SGLT2 (%)  456  39.01  15.22  0.001  0.28  0.13  0.64  0.002 
GLP1-RA (%)  187  16.00  4.35  0.033  0.24  0.06  0.97  0.046 
Insulin (%)  487  41.66  22  47.83  0.406  1.30  0.73  2.32  0.373 
Cardiovascular disease (%)  683  58.53  40  86.96  < 0.001  4.62  1.96  10.91  < 0.001 
Heart failure (%)  445  38.07  35  76.09  < 0.001  5.26  2.67  10.37  < 0.001 
Depressed LVEF (%)  192  16.48  20  43.48  < 0.001  6.71  3.21  14.03  < 0.001 
Intermediate LVEF (%)  88  7.55  15.22    4.92  1.91  12.69  0.001 
Preserved LVEF (%)  165  14.16  17.39    3.50  1.41  8.71  0.007 
Cerebrovascular disease (%)  93  7.96  15.22  0.079  2.13  0.95  4.76  0.066 
Peripheral artery disease (%)  121  10.36  11  23.91  0.004  2.77  1.41  5.47  0.003 
Coronary artery disease (%)  500  42.84  25  54.35  0.122  1.55  0.87  2.78  0.136 
Vascular territories affected (%)
0 territories (%)  591  50.60  14  30.43  0.016  1 (Ref)       
1 territory (%)  454  38.87  23  50.00    2.05  1.05  3.98  0.035 
> 1 territory (%)  123  10.53  19.57    3.16  1.37  7.31  0.007 
Atrial fibrillation (%)  252  21.59  18  39.13  0.005  2.34  1.30  4.24  0.005 
CKD stage (%)
Stage 1 (≥ 90)  33  9.27  4.76  0.005  1 (Ref)       
Stage 2 (60–89)  100  28.09  4.76    0.31  0.02  5.00  0.411 
Stage 3 (30–59)  199  55.90  14  66.67    2.16  0.28  16.44  0.457 
Stage 4 (15–29)  20  5.62  23.81    7.48  0.87  64.10  0.067 
Stage 5 (< 15)  1.12  0.00  0.158  0.00  0.00  0.00  0.997 
UAE (%)
UAE < 30  730  72.78  25  62.50    1 (Ref)       
UAE = [30, 300)  230  22.93  11  27.50    1.43  0.70  2.91  0.324 
UAE ≥ 300  43  4.29  10.00    2.61  0.91  7.51  0.075 

UAE, urinary albumin excretion; ERC, chronic kidney disease; LVEF, left ventricular ejection fraction; HTN, arterial hypertension; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; eGFR, estimated glomerular filtration rate.

Table 5 shows the IRs of overall and cardiovascular mortality depending on the type of initial CVD, while Fig. 1 shows the survival curves. For comparison purposes, the IR of mortality in patients diagnosed with cancer is also included. Patients without CVD had a mortality IR of 19/1000 and and a CVM IR of 4.5/1000. As expected, any signs of CVD increased the rates of overall mortality and CVM. Specifically, the highest IRs of overall and CVM were reported in patients with PAD (85.6/1000 and 33.6/1000 patient-years, respectively), in those with > 1 vascular territory affected (79.1/1000 and 27.4/1000, respectively), and in those diagnosed with heart failure (72.9/1000 and 28.7/1000, respectively). Notably, the highest IR of CVM was observed in patients with HFrEF (36.5/1000). The IRs were lower in subjects with CAD (47.6/1000 and 18.1/1000 for overall mortality and CVM, respectively).

Table 5.

Incidence rates (IR) per 1000 patient-years for the overall and cardiovascular mortality.

    Total deaths (n)  Mortality IR  p (log rank test)  Vascular deaths (n)  Cardiovascular mortality IR 
Cancer  No  105  35.38  0.008  40  13.48  0.161 
  Yes  17  71.03    25.07   
Cardiovascular disease  No  25  18.98  < 0.001  4.56  < 0.001 
  Yes  97  51.46    40  21.22   
Heart filure by EF  No  33  16.61  Reference  11  5.54  Reference 
  EF<40%  39  71.17  < 0.001  20  36.50  < 0.001 
  EF40%  50  74.33  < 0.001  15  22.30  < 0.001 
Heart failure  No  33  16.61  < 0.001  11  5.54  < 0.001 
  Yes  89  72.91    35  28.67   
Cerebrovascular disease  No  104  35.21  0.004  39  13.20  0.06 
  Yes  18  71.64    27.86   
Peripheral artery disease  No  94  32.67  < 0.001  35  12.16  0.002 
  Yes  28  85.55    11  33.61   
Coronary artery disease  No  56  30.82  0.017  21  11.56  0.133 
  Yes  66  47.65    25  18.05   
Atherosclerotic cardiovascular disease  No  44  27.45  0.002  14  8.73  0.008 
  Yes  78  48.69    32  19.98   
Vascular territories affected  44  27.45  Reference  14  8.73  Reference 
  52  40.84  0.059  23  18.07  0.03 
  > 1  26  79.10  < 0.001  27.38  0.004 
Figure 1.

Survival curves for the overall mortality depending on the type of initial CVD.

(0.13MB).

On the univariate analysis, the cardiovascular diseases that most increased the risk of mortality (Table 3) were heart failure (HR, 4.4; p<0.001) and PAD (HR, 2.6; p<0.001). Of note that patients on i-SGLT2 (HR, 0.47; p<0.001) or GLP1-RA (HR, 0.18; p<0.001) had a lower risk of mortality. Regarding CVM, the risk increased significantly with the presence of heart failure (HR, 5.3; p<0.001) and PAD (HR, 2.8; p=0.003), while it was lower in those on i-SGLT2 (HR, 0.28; p=0.002) or GLP1-RA (HR, 0.24; p=0.046).

On the multivariate analysis of the final model chosen for the overall mortality, with the simultaneous inclusion of all affected vascular territories and adjusted for other variables associated with mortality, the only CVD sign that remained statistically significant was heart failure (HR, 1.63; 95% CI, 1.03–2.58; p=0.037). Other factors that increased mortality risk were age (HR₁year: 1.07; 95% CI, 1.04–1.10; p<0.001) and the Charlson index (HR₁point: 1.77; 95% CI, 1.46–2.16); conversely, factors associated with lower risk were eGFR (HR₁mL/min: 0.990; 95% CI, 0.980–0.999; p=0.003), a cancer diagnosis (HR, 0.52; 95% CI, 0.28–0.98; p=0.042), and being on GLP1-RA (HR, 0.29; 95% CI, 0.10–0.78; p=0.014).

In the multivariate analysis of the final model chosen for CVM, with the simultaneous inclusion of all affected vascular territories and adjusted for other variables associated with CVM, the only CVD sign that remained statistically significant was also heart failure (HR, 3.41; 95% CI, 1.68–6.93; p=0.001). Another factor that increased the risk of CVM was age (HR₁year: 1.04; 95% CI, 1.00–1.08; p=0.033); conversely, protective factors were eGFR (HR₁ml/min: 0.98; 95% CI, 0.96–0.99; p=0.008), and at the limit of statistical significance, female gender (HR, 0.50; 95% CI, 0.25–1.01; p=0.053) and being oni-SGLT2 (HR, 0.44; 95% CI, 0.19–1.01; p=0.052).

Discussion

In our study, through the prospective follow-up of a cohort of T2DM patients recruited in the hospital setting over 2.6 years, and with a high prevalence of CVD, we found that the IRs of overalll mortality and CVM vary depending on the type of initial CVD. The highest IRs and the greatest risk increase were reported in patients with heart failure, PAD, and atherosclerotic involvement of > 1 vascular territory. In the adjusted analysis for potential confounding factors, the only CVD that increased risk significantly was heart failure. Of note that all mortality IRs, except for those associated with CAD, were higher compared with having a cancer diagnosis.

The risk of overall mortality, and specifically CVM, is variable in patients with DM, which is clinical practice guidelines15,16 recommend careful vascular risk stratification for each patient to determine the type of treatment and the intensity of therapeutic goals. There is limited data in literature comparing the mortality risk of different CVD signs. In a retrospective study based on primary care databases in the UK,17 the risk of CVM was higher in patients with multiple cardiovascular comorbidities. In a recent Danish population study,18 with over 150,000 T2DM patients analyzed in a 10-years follow-up, the highest mortality risk was associated with heart failure development (RR, 3), an intermediate risk was associated with PAD and CeVD (RR, 2.3 and 2.2, respectively), and a lower risk was reported with CAD (RR, 1.3); however, they did not provide any other information on other risk factors or microvascular involvement. These data are entirely comparable to those found in our study in the univariate mortality analysis.

The recognition of heart failure as a DM-related complication, due to the detrimental effect of hyperglycemia and insulin resistance, has increased in recent years and been the subject of reviews11 and consensus documents.19 T2DM can promote the development of both HFpEF (more common in the early stages of the disease) and HFrEF (more common in patients with CAD).11 Mortality risk seems to be higher in patients with HFrEF,20 which is proportional to the degree of LVEF reduction. In our study, we found that while the IRs of overall mortality were similar, the IRs of CVM were higher in patients with heart failure if LVEF was <40%.

The presence of PAD significantly increases the likelihood of other ASCVD signs and heart failure, making it a marker of polyvascular disease.21 A large epidemiological study confirmed the association of PAD with other forms of ASCVD and heart failure, as well as a significant increase in CVM risk (HR, 1.86).22 Our work confirmed that patients with PAD had a high prevalence of other ASCVD signs and heart failure, justifying the highest IRs of overall mortality and one of the highest IRs of CVM, only surpassed by patients with HFrEF.

The higher risk conferred by the presence of heart failure and PAD is associated with the fact that these may currently be the most frequent initial CVD entities, in addition to PAD being the atherosclerotic disease most closely associated with DM.23 In fact, in recent decades, the form of ASCVD that has experienced the greatest reduction in IRs has been CAD; this reduction has also been accompanied by a decrease in the absolute number of cases, which has not been achieved for PAD or CeVD.24 Therefore, recent clinical practice guidelines recommend having a high index of suspicion when screening for heart failure16,25 and PAD.16

The latest epidemiological data from Spain26 confirm a favorable trend in reducing mortality in T2DM patients. The overall trend towards a reduction in CVM rates may be due to better preventive and therapeutic strategies.8,27 The demonstration of the specific benefit of i-SGLT2 and GLP1-RA9 makes them unanimously recommended in the presence of CVD in T2DM patients.15,16 In our study, although not specifically designed for this, we saw an improvement in the prognosis of patients treated in these therapeutic groups. Moreover, we saw room for improvement, as only 39% of patients with CVD were on i-SGLT2 and 12% on GLP1-RA. These results may serve to promote the use of cardioprotective drugs, aiming to ensure that no patient who could benefit from them is deprived of their prescription.28 Additionally, the added benefit of the simultaneous use of several therapeutic groups should be considered.29 Furthermore, we also found in our work that lipid-lowering treatment needs to be intensified to reach the goals set by the clinical guidelines.15

The present study has the advantage of including a sample of T2DM patients with a high prevalence of CVD, recruited in hospitals representative of the entire national territory. Epidemiological, clinical, and analytical data were available. Additionally, patients had been jointly evaluated in cardiology and endocrinology clinics, so echocardiographic data were available for almost 90% of the cohort. Therefore, the IRs described in various situations can be considered accurate.

However, there are important limitations that should be taken into consideration. Firstly, the sample and follow-up were smaller than initially projected due to restrictions imposed by the COVID-19 pandemic; therefore, the statistical power may be limited for performing multivariable regression models and subgroup analyses, which means that results should be interpreted with caution. For example, the increased mortality risk conferred by cancer in the univariate analysis was reversed in the multivariate analysis, which could be justified by the simultaneous inclusion of the Charlson index and the competitive risk of CVM. Secondly, patients were recruited at a hospital setting, so the CVD prevalences are not representative of the entire T2DM patient population. Finally, treatment was prescribed at the responsible physician’s discretion, so efficacy data regarding mortality risk reduction for some drugs may be partially biased (indication bias) and should be considered as hypothesis-generating rather than definitive.

In conclusion, the residual risk of overall mortality and CVM in T2DM patients with CVD can be very high. This is especially evident in subjects with heart failure, PAD, and atherosclerotic involvement of multiple vascular territories. The presence of heart failure independently triples the risk of CVM, while the increased risk associated with PAD can be explained by its frequent association with heart failure and polyvascular involvement. Therefore, we believe it is necessary to detect these conditions in T2DM patients to optimize vascular risk factor management and increase the use of glucose-lowering drugs with the potential to improve disease prognosis.

Funding

This work was funded by a grant awarded to the Spanish Society of Diabeetes and the Spanish Society of Cardiology by Boehringer Ingelheim.

Conflicts of interest

None declared.

Appendix A
Supplementary data

The following is Supplementary data to this article:

References
[1]
S. Rao Kondapally Seshasai, S. Kaptoge, A. Thompson, E. Di Angelantonio, P. Gao, N. Sarwar, Emerging Risk Factors Collaboration, et al.
Diabetes mellitus, fasting glucose, and risk of cause-specific death.
N Engl J Med, 364 (2011), pp. 829-841
[2]
E. Di Angelantonio, S. Kaptoge, D. Wormser, P. Willeit, A.S. Butterworth, N. Bansal, Emerging Risk Factors Collaboration, et al.
Association of cardiometabolic multimorbidity with mortality.
JAMA, 314 (2015), pp. 52-60
[3]
Emerging Risk Factors Collaboration.
Life expectancy associated with different ages at diagnosis of type 2 diabetes in high-income countries: 23 million person-years of observation.
Lancet Diabetes Endocrinol, 11 (2023), pp. 731-742
[4]
R.R. Holman, S.K. Paul, M.A. Bethel, D.R. Matthews, H.A. Neil.
10-year follow-up of intensive glucose control in type 2 diabetes.
N Engl J Med, 359 (2008), pp. 1577-1589
[5]
R.R. Holman, S.K. Paul, M.A. Bethel, H.A. Neil, D.R. Matthews.
Long-term follow-up after tight control of blood pressure in type 2 diabetes.
N Engl J Med, 359 (2008), pp. 1565-1576
[6]
H.M. Colhoun, D.J. Betteridge, P.N. Durrington, G.A. Hitman, H.A. Neil, S.J. Livingstone, CARDS investigators, et al.
Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial.
[7]
P. Gaede, J. Oellgaard, B. Carstensen, P. Rossing, H. Lund-Andersen, H.H. Parving, et al.
Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial.
Diabetologia, 59 (2016), pp. 2298-2307
[8]
A. Rawshani, A. Rawshani, S. Franzén, B. Eliasson, A.M. Svensson, M. Miftaraj, et al.
Mortality and cardiovascular disease in type 1 and type 2 diabetes.
N Engl J Med, 376 (2017), pp. 1407-1418
[9]
Q. Shi, K. Nong, P.O. Vandvik, G.H. Guyatt, O. Schnell, L. Rydén, et al.
Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials.
[10]
K.H. Mak, E. Vidal-Petiot, R. Young, E. Sorbets, N. Greenlaw, I. Ford, CLARIFY Investigators, et al.
Prevalence of diabetes and impact on cardiovascular events and mortality in patients with chronic coronary syndromes, across multiple geographical regions and ethnicities.
Eur J Prev Cardiol, 28 (2022), pp. 1795-1806
[11]
A. Pandey, M.S. Khan, K.V. Patel, D.L. Bhatt, S. Verma.
Predicting and preventing heart failure in type 2 diabetes.
Lancet Diabetes Endocrinol, 11 (2023), pp. 607-624
[12]
J.M. Rodriguez-Valadez, M. Tahsin, K.E. Fleischmann, U. Masharani, J. Yeboah, M. Park, et al.
Cardiovascular and renal benefits of novel diabetes drugs by baseline cardiovascular risk: a systematic review, meta-analysis, and meta-regression.
Diabetes Care, 46 (2023), pp. 1300-1310
[13]
American Diabetes Association.
2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018.
Diabetes Care, 41 (2018), pp. S13-S27
[14]
P. Ponikowski, A.A. Voors, S.D. Anker, H. Bueno, J.G. Cleland, A.J. Coats, Authors/Task Force Members, et al.
2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC.
Eur J Heart Fail, 18 (2016), pp. 891-975
[15]
N. Marx, M. Federici, K. Schütt, D. Müller-Wieland, R.A. Ajjan, M.J. Antunes, ESC Scientific Document Group, et al.
2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes.
Eur Heart J, 44 (2023), pp. 4043-4140
[16]
American Diabetes Association Professional Practice Committee.
10. Cardiovascular disease and risk management: standards of care in diabetes-2024.
Diabetes Care, 47 (2024), pp. S179-S218
[17]
B. Coles, F. Zaccardi, C. Hvid, M.J. Davies, K. Khunti.
Cardiovascular events and mortality in people with type 2 diabetes and multimorbidity: a real-world study of patients followed for up to 19 years.
Diabetes Obes Metab, 23 (2021), pp. 218-227
[18]
B. Zareini, P. Blanche, M. D’Souza, M. Elmegaard Malik, C.H. Nørgaard, C. Selmer, et al.
Type 2 diabetes mellitus and impact of heart failure on prognosis compared to other cardiovascular diseases: a nationwide study.
Circ Cardiovasc Qual Outcomes, 13 (2020),
[19]
P.M. Seferović, M.C. Petrie, G.S. Filippatos, S.D. Anker, G. Rosano, J. Bauersachs, et al.
Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology.
Eur J Heart Fail, 20 (2018), pp. 853-872
[20]
Meta-analysis Global Group in Chronic Heart Failure (MAGGIC).
The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis.
Eur Heart J, 33 (2012), pp. 1750-1757
[21]
M.H. Criqui, K. Matsushita, V. Aboyans, C.N. Hess, C.W. Hicks, T.W. Kwan, American Heart Association Council on Epidemiology and Prevention, et al.
Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American Heart Association.
Circulation, 144 (2021), pp. e171-e191
[22]
C.A. Emdin, S.G. Anderson, T. Callender, N. Conrad, G. Salimi-Khorshidi, H. Mohseni, et al.
Usual blood pressure, peripheral arterial disease, and vascular risk: cohort study of 4.2 million adults.
BMJ, 351 (2015), pp. h4865
[23]
A.D. Shah, C. Langenberg, E. Rapsomaniki, S. Denaxas, M. Pujades-Rodriguez, C.P. Gale.
Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people.
Lancet Diabetes Endocrinol, 3 (2015), pp. 105-113
[24]
E.W. Gregg, Y. Li, J. Wang, N.R. Burrows, M.K. Ali, D. Rolka, et al.
Changes in diabetes-related complications in the United States, 1990-2010.
N Engl J Med, 370 (2014), pp. 1514-1523
[25]
R. Pop-Busui, J.L. Januzzi, D. Bruemmer, S. Butalia, J.B. Green, W.B. Horton, et al.
Heart failure: an underappreciated complication of diabetes. A consensus report of the American Diabetes Association.
Diabetes Care, 45 (2022), pp. 1670-1690
[26]
S. Ling, F. Zaccardi, B. Vlacho, P. Li, J. Real Gatius, M. Mata-Cases, et al.
All-cause and cardiorenal mortality in 6 million adults with and without type 2 diabetes: a comparative, trend analysis in Canada, Spain, and the UK.
Diabetes Obes Metab, 25 (2023), pp. 132-143
[27]
J.L. Harding, M.E. Pavkov, D.J. Magliano, J.E. Shaw, E.W. Gregg.
Global trends in diabetes complications: a review of current evidence.
Diabetologia, 62 (2019), pp. 3-16
[28]
A.J. Nelson, N.J. Pagidipati, V.R. Aroda, M.A. Cavender, J.B. Green, R.D. Lopes, et al.
Incorporating SGLT2i and GLP-1RA for cardiovascular and kidney disease risk reduction: call for action to the cardiology community.
[29]
B.L. Neuen, H.J.L. Heerspink, P. Vart, B.L. Claggett, R.A. Fletcher, C. Arnott, et al.
Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 Inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria.
Circulation, 149 (2024), pp. 450-462

The list of DIABET-IC researchers is presented in Appendix A.

Copyright © 2024. SEEN and SED
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos