covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Fundamentos de la apoptosis celular: interés en endocrinología
Información de la revista
Vol. 48. Núm. 9.
Páginas 272-280 (noviembre 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 9.
Páginas 272-280 (noviembre 2001)
Acceso a texto completo
Fundamentos de la apoptosis celular: interés en endocrinología
The basics of cellular apoptosis: interest in endocrinology
Visitas
10311
L.M. Frago, A. Arroba, J.A. Chowen
Autor para correspondencia
endocrino@hnjs.insalud.es

Correspondencia. Dra. J.A. Chowen. Unidad de Investigación. Hospital Niño Jesús. Avda. Menéndez Pelayo, 65. 28009 Madrid.
Unidad de Investigación. Hospital Niño Jesús. Madrid.
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

El número de células de un organismo está regulado por un balance entre la proliferación, la diferenciación y la muerte celular. Sin embargo, el equilibrio entre la proliferación y la muerte de una población celular puede estar alterado por un aumento o una disminución de uno de estos procesos. En particular, cuando la muerte celular ocurre en menor medida de lo normal, se observan alteraciones que conllevan acumulación de células. De igual forma, un aumento de la muerte celular podría ser responsable de la pérdida de células y sus enfermedades asociadas. A este respecto, la muerte celular se ha considerado como un mecanismo relevante que contribuye a la regulación de la vida.

Palabras Clave:
Apoptosis
Caspasas
Hormonas
Glándulas
Hipófisis
Diabetes

The number of cells in an organism is determined by a balance between cell proliferation, differentiation and death. However, the normal equilibrium between proliferation and death of a specific cell population is sometimes altered by an increase or decrease in either of these processes. For example, when cell death occurs to a lesser extent than required the result is an abnormal accumulation of cells. Likewise, an increase in cell death results in the loss of cells and possibly an associated disease. In this respect, cell death is considered to be an important mechanism for the regulation of life.

Key words:
Apoptosis
Caspases
Hormones
Pituitary
Diabetes
El Texto completo está disponible en PDF
Bibliografía
[1.]
A.H. Wyllie, J.F. Kerr, A.R. Currie.
Cell death: the significance of apoptosis.
Int Rev Cytol, 68 (1980), pp. 251-307
[2.]
R.A. Lockshin, C.M. Williams.
Programmed cell death: cytology of degeneration in the intersegmental muscles of silkmoth.
J Insect Physiol, 11 (1965), pp. 123-133
[3.]
L.M. Schwartz, S. Smith, M.E.E. Jones, B.A. Osborne.
Do all programmed cell death occur via apoptosis?.
Proc Natl Acad Sci USA, 90 (1993), pp. 980-984
[4.]
M.D. Jacobson, M. Weil, M.C. Raff.
Programmed cell death in animal development.
Cell, 88 (1997), pp. 347-354
[5.]
C.B. Thompson.
Apoptosis in the pathogenesis and treatment of disease.
Science, 267 (1995), pp. 1456-1462
[6.]
C. Borner, L. Monney.
Apoptosis without caspases: an inefficient molecular guillotine?.
Cell Death Differ, 6 (1999), pp. 497-507
[7.]
S. Sen, M. D'Incalci.
Apoptosis: biochemical events and relevance to cancer chemotheraphy.
FEBS Lett, 307 (1992), pp. 122-127
[8.]
Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, M.A. Hotz, P. Lassota, et al.
Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis).
Cytometry, 27 (1997), pp. 1-20
[9.]
I. Scovassi, G.G. Poirier.
Poly(ADP-ribosylation) and apoptosis.
Mol Cell Biochem, 199 (1999), pp. 125-137
[10.]
Y. Gavrieli, Y. Sherman, S.A. Ben-Sasson.
Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.
J Cell Biol, 119 (1992), pp. 493-501
[11.]
G.M. Cohen.
ICE-like proteases (caspases): the executioners of apoptosis.
Biochemical J, 326 (1997), pp. 1-16
[12.]
G. Núñez, M.A. Benedict, Y. Hu, N. Inohara.
Caspases: the proteases of the apoptotic pathway.
Oncogene, 17 (1998), pp. 3237-3245
[13.]
G.Y. Salvesen, V.M. Dixit.
Caspase activation: the induced-proximity model.
Proc Natl Acad Sci USA, 96 (1999), pp. 10964-10967
[14.]
Q. Zhou, G.S. Salvesen.
Activation of pro-caspase-9 by serine proteases includes a non-canonical specifity.
Biochem J, 324 (1997), pp. 361-364
[15.]
E.A. Slee, M.T. Harte, R.M. Kluck, B.B. Wolf, C.A. Casiano, D.D. Newmeyer, et al.
Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases –2, –3, –6, –7, –8 and –10 in a caspase –9– dependent manner.
J Cell Biol, 144 (1999), pp. 281-292
[16.]
D.W. Nicholson, N.A. Thornberry.
Caspases: killer proteases.
Trends Biochem, 22 (1997), pp. 199-306
[17.]
M. Muzio, B.R. Stockwell, H.R. Stennicke, G.S. Salvesen, V.M. Dixit.
An induced proximity model for caspase-8 activation.
J Biol Chem, 273 (1998), pp. 2926-2930
[18.]
J.J. Chou, H. Matsuo, H. Duan, G. Wagner.
Solution structure of the RIADD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment.
Cell, 94 (1998), pp. 171-180
[19.]
H.R. Stennicke, J.M. Jurgensmeier, H. Shin, Q. Deveraux, B.B. Wolf, X. Yang, et al.
Pro-caspase-3 is a major physiologic target of caspase-8.
J Biol Chem, 273 (1998), pp. 27084-27090
[20.]
H. Zou, W.J. Henzel, X. Liu, A. Lutschg, X. Wang.
Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3.
Cell, 90 (1997), pp. 405-413
[21.]
S.M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, E.S. Alnemri.
Autoactivation of procaspase-9 by Apaf-1 mediated oligomerization.
Mol Cell, 1 (1998), pp. 949-957
[22.]
P. Li, D. Nijhawan, I. Budihardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, et al.
Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.
Cell, 91 (1997), pp. 479-489
[23.]
G. Kroemer, B. Dellaporta, M. Resch-Rigon.
The mitochondrial death/life regulator in apoptosis and necrosis.
Annu Rev Physiol, 60 (1998), pp. 619-642
[24.]
D.R. Green, J.C. Reed.
Mitochondria and apoptosis.
Science, 281 (1998), pp. 1309-1312
[25.]
X. Liu, C.N. Kim, J. Yang, R. Jemmerson, X. Wang.
Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c.
Cell, 86 (1996), pp. 147-157
[26.]
R.M. Kluck, E. Bossy-Wetzel, D.R. Green, D.D. Newmeyer.
The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis.
Science, 275 (1997), pp. 1132-1136
[27.]
K. Kuida, T.F. Haydar, C.Y. Kuan, Y. Gu, C. Taya, H. Karasuyama, et al.
Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase-9.
Cell, 94 (1998), pp. 325-327
[28.]
H. Yoshida, Y-Y Kong, R. Yoshida, A.J. Elia, A. Hakem, R. Hakem, et al.
Apaf-1 is required for mitochondrial pathways of apoptosis and brain development.
Cell, 94 (1998), pp. 739-750
[29.]
M.O. Hengartner.
Death cycle and swiss army knives.
Nature, 391 (1998), pp. 441-442
[30.]
Q.L. Deveraux, R. Takahashi, G.H. Salvesen, J.C. Reed.
X-linked IAP is a direct inhibitor of cell-death proteases.
Nature, 388 (1997), pp. 300-304
[31.]
A.G. Uren, M. Pakusch, C.J. Hawkins, K.L. Puls, D.L. Vauls.
Clonning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors.
Proc Natl Acad Sci USA, 93 (1996), pp. 4974-4978
[32.]
J. Yang, X. Liu, K. Bhalla, C.N. Kim, A.M. Ibrado, J. Cai, et al.
Prevention of apoptosis by Bcl-2: release os cychrome c from mitochondria blocked.
Science, 275 (1997), pp. 1132-1136
[33.]
G. Pan, K. O'Rourke, V.M. Dixit.
Caspase-9, Bcl-Xl, and Apaf-1 form a ternary complex.
J Biol Chem, 273 (1998), pp. 5841-5845
[34.]
Y. Hu, M.A. Benedict, D. Wu, N. Inohara, G. Núñez.
Bcl-Xl interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation.
Proc Natl Acad Sci USA, 95 (1998), pp. 4386-4391
[35.]
M.P. Boldin, T.M. Goncharov, Y.V. Goltsev, D. Wallach.
Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death.
Cell, 85 (1996), pp. 803-815
[36.]
H. Li, H. Zhu, C. Xu, J. Yuan.
Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis.
Cell, 94 (1998), pp. 491-501
[37.]
S. Desagher, A. Osen-Sand, A. Nichols, R. Eskes, S. Montessuit, S. Laupeer, et al.
Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis.
J Cell Biol, 144 (1999), pp. 891-901
[38.]
C. Stroh, K. Schulze-Osthoff.
Death by a thousand cuts: an ever increasing list of caspase substrates.
Cell Death Differ, 5 (1998), pp. 997-1000
[39.]
M. Van de Craen, W. Declercq, I. Van den brande, W. Fiers, P. Vandenabeele.
The proteolytic procaspase activation network: an in vitro analysis.
Cell Death Differ, 6 (1999), pp. 1117-1124
[40.]
E.H. Cheng, D.G. Kirsch, R.J. Clem, R. Ravi, M.B. Kastan, A. Bedi, et al.
Conversion of Bcl-2 to a Bax-like death effector by caspases.
Science, 278 (1997), pp. 1966-1968
[41.]
C. Scaffidi, S. Fulda, A. Srinivasan, C. Friesen, F. Li, K.J. Tomaselli, et al.
Two CD95 (APO-1/Fas) signaling pathway.
EMBO J, 17 (1998), pp. 1675-1687
[42.]
Y. Jiang, J.D. Woronicz, W. Liu, D.V. Goeddel.
Prevention of constitutive TNF receptor 1 signaling by silencer of death domains.
Science, 283 (1999), pp. 543-546
[43.]
D. De Valck, D.Y. Jin, K. Heyninck, M. Van de Craen, R. Contreras, W. Fiers, et al.
The zinc finger protein A20 interacts with a novel antiapoptotic protein which is cleaved by specific caspases.
Oncogene, 18 (1999), pp. 4182-4190
[44.]
C. Wang, M.W. Mayo, R.G. Korneluk, D.V. Goeddel, A.S. Baldwin Jr..
NFkappa B antiapoptotis: induction of TRAF1 annd TRAF2 and c-IAP 1 and c-IAP 2 to supress caspase-8 activation.
Science, 281 (1998), pp. 1680-1683
[45.]
D. Vercammen, P. Vandenabeele, R. Beyaert, W. Declercq, W. Fiers.
Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells.
Cytokine, 9 (1997), pp. 801-808
[46.]
W. Kiess, B. Gallaher.
Hormonal control of programmed cell death/apoptosis.
Eur J Endocrinol, 138 (1998), pp. 482-491
[47.]
B.S. McEwen, P.G. Davis, B. Parsons, D.W. Pfaff.
The brain as a target for steroid hormone action.
Annu Rev Neurosci, 2 (1979), pp. 65-112
[48.]
E. Ahlbom, L. Grandison, B. Zhivotovsky, S. Ceccatelli.
Termination of lactation induces apoptosis and alters the expression of the Bcl-2 family members in the rat anterior pituitary.
Endocrinology, 139 (1998), pp. 2465-2471
[49.]
L.G. Goluboff, C. Ezrin.
Effect of pregnancy on the somatotrophs and the prolactin cell of the human adenohypophysis.
J Clin Endocrinol Metab, 29 (1969), pp. 1533-1538
[50.]
L.M. García-Segura, P. Cardona-Gómez, F. Naftolin, J.A. Chowen.
Estradiol upregulates Bcl-2 expression in adult brain neurons.
Neuroendocrinology, 9 (1998), pp. 593-597
[51.]
L.M. García-Segura, G.P. Cardona-Gómez, J.A. Chowen, I. Azcoitia.
Insulin-like growth factor-I receptor and estrogen receptors interact in the promotion of neuronal survival and neuroprotection.
J Neurocytol, 29 (2000), pp. 425-437
[52.]
H.L. Cheng, E.L. Feldman.
Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by Insulin-like growth factor-I.
J Biol Chem, 273 (1998), pp. 14560-14565
[53.]
N. Cheng, L. Dong, M. Schachner.
Prevention of neuronal cell death by neural adhesion molecules L1 and CHL1.
J Neurobiol, 38 (1999), pp. 428-439
[54.]
T. Chittenden, E.A. Harrington, R. O'Connor, C. Flemington, R.J. Lutz, G.I. Evan.
Induction of apoptosis by the Bcl-2 homologue Bak.
Nature, 374 (1995), pp. 733-736
[55.]
C.G. Print, K.L. Loveland.
Germ cell suicide: new insights into apoptosis during spermatogenesis.
[56.]
K. Boekelheide, S.L. Fleming, K.J. Johnson, S.R. Patel, H.A. Schoenfeld.
Role of Sertoli cells in injury-associated testicular germ cell apoptosis.
Proc Soc Exp Biol Med, 225 (2000), pp. 105-115
[57.]
G. Dirami, N. Ravindranath, H.K. Kleinman, M. Dym.
Evidence that basement membrane prevents apoptosis of Sertoli cells in vitro in the absence of known regulators of sertoli cell function.
Endocrinology, 136 (1995), pp. 4439-4447
[58.]
F. Sinowatz, W. Amselgruber, J. Plendl, S. Kolle, C. Neumuller, G. Boos.
Effects of hormones on the prostate in adult and aging men and animals.
Microsc Res Tech, 30 (1995), pp. 282-292
[59.]
A. Amsterdam, A. Dantes, N. Selvaraj, D. Aharoni.
Apoptosis in steroidogenic cells: structure-function analysis.
Steroids, 62 (1997), pp. 207-211
[60.]
K. Reynaud, M.A. Driancourt.
Oocyte attrition.
Mol Cell Endocrinol, 163 (2000), pp. 1001-1108
[61.]
S.D. Westfall, I.R. Hendry, K.L. Obholz, B.R. Rueda, J.S. Davis.
Putative role of the phosphatidylinositol 3-kinase-Akt signaling pathway in the survival of granulosa cells.
Endocrine, 12 (2000), pp. 315-321
[62.]
Apoptosis II: the molecular basis of apoptosis in disease. Current Comminications in Cell and Molecular Biology 8,
[63.]
C.S. Atwood, M. Ikeda, B.K. Vonderhaar.
Involution of mouse mammary glands in whole organ culture: a model for studying programmed cell death.
Biochem Biophys Res Commun, 207 (1995), pp. 860-867
[64.]
O.D. Slayden, J.J. Hirst, R.M. Brenner.
Estrogen action in the reproductive tract of rhesus monkeys during antiprogestin treatment.
Endocrinology, 132 (1993), pp. 1845-1856
[65.]
K.C. Akcali, S.A. Khan, B.C. Moulton.
Effect of decidualization on the expresion of bax and bcl-2 in the rat uterine endometrium.
Endocrinology, 137 (1996), pp. 3123-3131
[66.]
H. Zulewski, E.J. Abraham, M.J. Gerlach, P.B. Daniel, W. Moritz, B. Muller, et al.
Multipotencial nestin-positive stem cells isolated from adult pancreatic islet differenciate ex vivo into pancreatic endocrine, exocrine and hepatic phenotypes.
Diabetes, 50 (2001), pp. 521-533
[67.]
T. Mandrup-Poulsen.
b-Cell Apoptosis.
Diabetes, 50 (2001), pp. S58-S63
[68.]
A. Ammendrup, A. Maillard, K. Nielsen, N. Aabenhus Andersen, P. Serup, O. Dragsbaek Madsen, et al.
The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells.
Diabetes, 49 (2000), pp. 1468-1476
[69.]
T. Gurlo, K. Kawamura, H. Von Grafenstein.
Role of inflammatory infiltrate in activation and effector function of cloned islet reactive nonobese diabetic CD8+ T cells. Involvement of a nitric oxide-dependent pathway.
J Immunol, 163 (1999), pp. 5770-5780
[70.]
T. Mandrup-Poulsen.
The role of interleukin-1 in the pathogenesis of IDDM.
Diabetologia, 39 (1996), pp. 1005-1029
[71.]
C. Cailleau, A. Diu-Hercend, E. Ruuth, R. Westwood, C. Carnaud.
Treatment with neutralizing antibodies specific for IL-1 beta prevents cyclophosphamide-induced diabetes in nonobese diabetic mice.
Diabetes, 46 (1997), pp. 937-940
[72.]
M. Federici, M. Hribal, L. Perego, M. Ranalli, Z. Caradonna, C. Perego, et al.
High glucose Causes apoptosis in cultured human pancreas islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program.
Diabetes, 50 (2001), pp. 1290-1301
[73.]
M. Shimabukuro, M.Y. Wang, Y.T. Zhou, C.B. Newgard, R.H. Unger.
Protection against lipoapoptosis of beta cells through leptin-dependent manteinance of Bcl-2 expression.
pp. 9558-9561
[74.]
I.B. Efanova, S.V. Zaitsev, B. Zhivotovsky, M. Kohler, S. Efendic, S. Orrenius, et al.
Glucose and tolbutamida induce apoptosis in pancreatic betacells: a process dependent on intracellular Ca2+ concentration.
J Biol Chem, 273 (1998), pp. 33501-33507
[75.]
E.L. Saafi, B. Konarkowska, S. Zhang, J. Kistler, G.J. Cooper.
Ultrastructural evidence that apoptosis is the mechanism by which human amylin evokes death in RINm5F pancreatic islet beta-cells.
Cell Biol Int, 25 (2001), pp. 339-350
[76.]
M. Andrikoula, A. Tsatsoulis.
The role of Fas-mediated apoptosis in thyroid disease.
Eur J Endocrinol, 144 (2001), pp. 561-568
[77.]
N. Mitsiades, V. Poulaki, G. Mastorakos, S. Tselenis-Balafouta, V. Kotoula, D.A. Koutras.
Fas ligand expression in thyroid carcinomas: a potential mechanism of inmune evasion.
J Clin Endocrinol Metab, 84 (1999), pp. 2924-2932
[78.]
J. Feldkamp, E. Pascher, A. Perniok, V.A. Scherbaum.
Fas-mediated apoptosis is inhibited by TSH and iodine in moderate concentrations in primary human thyrocytes in vitro.
Horm Metab Res, 31 (1999), pp. 355-358
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos