covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición La miostatina: un regulador autocrino/paracrino del desarrollo muscular
Información de la revista
Vol. 52. Núm. 7.
Páginas 350-357 (septiembre 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 52. Núm. 7.
Páginas 350-357 (septiembre 2005)
Revisiones
Acceso a texto completo
La miostatina: un regulador autocrino/paracrino del desarrollo muscular
Myostatin: an autocrine/paracrine regulator of muscular development
Visitas
22223
V.M. Arce
Autor para correspondencia
fsvarce@usc.es

Correspondencia: Dr. V.M. Arce. Departamento de Fisioloxía. Facultade de Medicina. Universidade de Santiago de Compostela. San Francisco, s/n. 15782 Santiago de Compostela. A Coruña. España.
, I. Carneiro, S. Fernández-Nocelo, J. Devesa
Fisioloxía Factultade de Medicina. Facultad de Medicina y Odontología. Santiago de Compostela. A Coruña. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La miostatina es una proteína perteneciente a la familia del factor de crecimiento de transformación (TGF)-β, que desempeña un papel fundamental en el control del desarrollo muscular. Como ocurre con el resto de miembros de la familia del TGF-β, la miostatina se sintetiza en forma de un precursor inactivo que ha de tener un procesamiento proteolítico para dar lugar a la forma madura. La miostatina se expresa de forma casi exclusiva en el músculo esquelético donde actúa de forma autocrina/paracrina al inhibir el desarrollo muscular. En ratones, el bloqueo de la miostatina produce un marcado aumento de la masa muscular y una disminución de la adiposidad. Este efecto sobre el ejido adiposo es tan marcado que el bloqueo de la miostatina es incluso capaz de revertir la obesidad en diversas cepas de ratones. Debido a estas acciones, se está comenzando a estudiar el uso de fármacos apaces de bloquear la miostatina para la prevención y el tratamiento de la obesidad, la diabetes tipo 2, y en enfermedades en las que es necesario favorecer el anabolismo muscular (como ocurre en algunas distrofias musculares o en los cuadros de caquexia).

Palabras clave:
Obesidad
Miostatina
Desarrollo muscular

Myostatin is a protein belonging to the transforming growth factor (TGF)-β family, which plays a major role in controlling muscular development. As occurs with other members of the TGF-β family, myostatin is synthesised as an inactive precursor that needs to undergo proteolytic processing to give rise to the mature peptide. Myostatin is almost exclusively expressed in skeletal muscle, where it acts in an autocrine/paracrine fashion to inhibit muscle growth. In mice, myostatin blockade results in a dramatic increase in muscle mass and decreased adiposity. The effect on adipose tissue is so marked that myostatin blockade is even capable of reverting obesity in several strains of obese mice. Because of these actions, the use of myostatin-blocking agents has been proposed as a new strategy in the prevention or treatment of obesity and type 2 diabetes, as well as in diseases in which muscular anabolism needs to be stimulated (such as some muscular dystrophies and wasting conditions).

Key words:
Obesity
Myostatin
Muscular development
El Texto completo está disponible en PDF
Bibliografía
[1.]
A.C. McPherron, A.M. Lawler, S.-J. Lee.
Regulation of skeletal muscle mass in mice by a new TGF-b superfamily member.
Nature, 387 (1997), pp. 83-90
[2.]
N.F. González-Cadaviz, W.E. Taylor, K. Yarasheski, I. Sinha-Hikim, K. Ma, S. Ezzat, et al.
Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting.
Proc Natl Acad Sci USA, 95 (1998), pp. 14938-14943
[3.]
M. Thomas, B. Langley, C. Berry, M. Sharma, S. Kirk, J. Bass, et al.
Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation.
J Biol Chem, 275 (2000), pp. 40235-40243
[4.]
W.E. Taylor, S. Bhasin, J. Artaza, F. Byhower, M. Azam, D.H. Willard, et al.
Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells.
Am J Physiol Endocrinol Metab, 280 (2001), pp. E221-E228
[5.]
J. Lee S-, A.C. McPherron.
Regulation of myostatin activity and muscle growth.
Proc Natl Acad Sci USA, 98 (2001), pp. 9306-9311
[6.]
R.S. Thies, T. Chen, M.V. Davies, K.N. Tomkinson, A.A. Pearson, Q.A. Shakey, et al.
GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 binding.
Growth Factors, 18 (2001), pp. 251-259
[7.]
R. Ríos, S. Fernández-Nocelo, I. Carneiro, V.M. Arce, J. Devesa.
Differential response to exogenous and endogenous myostatin in myoblasts suggests that myostatin acts as an autocrine factor in vivo.
Endocrinology, 145 (2004), pp. 2795-2803
[8.]
G. Thomas.
Furin at the cutting edge: from protein traffic to embryogenesis and disease.
Nat Rev Mol Cell Biol, 3 (2002), pp. 753-766
[9.]
J.J. Hill, M.V. Davies, A.A. Pearson, J.H. Wang, R.M. Hewick, N.M. Wolfman, et al.
The myostatin propeptide and the follistatin related gene are inhibitory binding proteins of myostatin in normal serum.
J Biol Chem, 277 (2002), pp. 40735-40741
[10.]
J.J. Hill, Y. Quiu, R.N. Hewick, N.M. Wolfman.
Regulation of myostatin in vivo by GASP-1: a novel protein with protease inhibitor and follistatin domains.
Mol Endocrinol, 17 (2003), pp. 1144-1154
[11.]
N.M. Wolfman, A.C. McPherron, W.N. Pappano, M.V. Davies, K. Song, K.N. Tomkinson, et al.
Activation of latent myostatin by the BMP-1/tolloid family of metalloproteases.
Proc Natl Acad Sci USA, 100 (2003), pp. 15842-15846
[12.]
L. Grobet, L.J. Royo-Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet.
A deletion in the myostatin gene causes doublemuscling in cattle.
Nat Genet, 17 (1997), pp. 71-74
[13.]
J.I. Shaoquan, R.L. Losinski, S.G. Cornelius, G.R. Frank, G.M. Willis, D.E. Gerrard, et al.
Myostatin expression in porcine tissues: tissue specificity and development and postnatal regulation.
Am J Physiol, 275 (1998), pp. R1265-R1273
[14.]
H. Kocamis, J. Killefer.
Myostatin expression and possible functions in animal muscle growth.
Domestic Animal Endocrinology, 23 (2002), pp. 447-454
[15.]
K. Sakuma, K. Watanabe, M. Sano, I. Uramoto, T. Totsuka.
Differential adaptation of GDF8/miostatin, FGF6 and leukaemia inhibitory factor in overloaded, regenerating and denervated rat muscles.
Biochem Biophys Acta, 1497 (2000), pp. 77-88
[16.]
M. Sharma, R. Kambadur, K.G. Matthews, W.G. Somers, G.P. Devlin, J.V. Conaglen, et al.
Myostatin, a transforming growth factorb superfamily member, is expressed in heart muscle and is upregulated in cardiomyocites after infart.
[17.]
S. Fernández, R. Ríos, V. Arce, J.A. Díaz, N. Alonso, M. Pérez, et al.
Myostatin (GDF-8) is expressed in human myeloid leukemia cells.
Proceedings from the 7th Annual Meeting of the European Haematological Association, pp. 323-326
[18.]
T. Cho, L.C. Gerstenfeld, T.A. Einhorn.
Differential expression of members of the transforming growth factor ß superfamily during murine fracture healing.
J Bone Miner Res, 17 (2002), pp. 513-520
[19.]
X. Zhu, M. Hadhazy, M. Wehling, J.G. Tidball, E.M. McNally.
Dominant negative myostatin produces hypertrophy without hyperplasia in muscle.
FEBS Lett, 474 (2000), pp. 71-75
[20.]
J. Yang, T. Ratovitski, J.P. Brady, M.B. Solomon, K.D. Wells, R.J. Wall.
Expression of myostatin pro domain results in muscular transgenic mice.
Mol Reprod Dev, 60 (2001), pp. 351-361
[21.]
M. Nishi, A. Yasue, S. Nishimatu, T. Nohno, T. Yamaoka, M. Itakura, et al.
A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle.
Biochem Biophys Res Commun, 293 (2002), pp. 247-251
[22.]
G. Szabo, G. Dallman, G. Muller, L. Patthy, M. Soller, L. Varga.
A deletion in the myostatin gene causes the compact (cmpt) hypermuscular mutation in mice.
Mamm Genome, 9 (1998), pp. 671-672
[23.]
L. Grobet, D. Poncelet, L.J. Royo Martin, B. Brouwers, D. Pirottin, C. Michaux, et al.
Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle.
Mamm Genome, 9 (1998), pp. 210-213
[24.]
M. Schuelke, K.R. Wagner, L.E. Stolz, C. Hübner, T. Riebel, W. Körnen, et al.
Myostatin mutation associated with gross muscle hypertrophy in a child.
N Engl J Med, 350 (2004), pp. 2682-2688
[25.]
S. McCroskery, M. Thomas, L. Maxwell, M. Sharma, R. Kambadur.
Myostatin negatively regulates satellite cell activation and self-renewal.
J Cell Biol, 162 (2003), pp. 1135-1147
[26.]
S. Kirk, J. Oldham, R. Kambadur, M. Sharma, P. Dobbie, J. Bass.
Myostatin regulation during skeletal muscle regeneration.
[27.]
K. Ma, C. Mallidis, S. Bhasin, V. Mahabadi, J. Artaza, N. González-Cadavid, et al.
Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostain gene expression.
Am J Physiol Endocrinol Metab, 285 (2003), pp. E363-E371
[28.]
L. Grobet, D. Pirottin, F. Farnir, D. Poncelet, J.L. Royo, B. Brouwers, et al.
Modulating skeletal muscle mass by postnatal musclespecific inactivation of the myostatin gene.
Genesis, 35 (2003), pp. 227-238
[29.]
L.A. Whittemore, K. Song, X. Li, J. Aghajaniam, M. Davies, S. Gingenrath, et al.
Inhhibition of myostatin in adult mice increases skeletal muscle mass and strength.
Biochem Biophys Res Commun, 300 (2003), pp. 965-971
[30.]
W. Liu, S.G. Thomas, S.L. Asa, N. González-Cadavid, S. Bhasin, S. Ezzat.
Myostatin is a skeletal muscle target of growth hormone anabolic action.
J Clin Endocrinol Metab, 88 (2003), pp. 5490-5496
[31.]
T.J. Marcell, M. Harman, R.J. Urban, D.D. Metz, B.D. Rodgers, M.R. Blackman.
Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men.
Am J Physiol Endocrinol Metab, 281 (2001), pp. E1159-E1164
[32.]
K.T. Brill, A.L. Weltman, A. Gentili, et al.
Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men.
J Clin Endocrinol Metab, 87 (2002), pp. 5649-5657
[33.]
R. Ríos, I. Carneiro, V.M. Arce, J. Devesa.
yostatin regulates cell survival during C2C12 myogenesis.
Biochem Biophys Res Commun, 280 (2001), pp. 561-566
[34.]
R. Ríos, I. Carneiro, V.M. Arce, J. Devesa.
yostatin is an inhibitor of myogenic differentiation.
Am J Physiol Cell Physiol, 282 (2002), pp. C993-C999
[35.]
B. Langley, M. Thomas, C. McFarlane, S. Gilmour, M. Sharma, R. Kambadur.
Myostatin inhibits rhabdmyosarcoma cell proliferation through an Rb-independent pathway.
Oncogene, 23 (2004), pp. 524-534
[36.]
J. Massague.
TGF-β signal transduction.
Annu Rev Biochem, 67 (1998), pp. 753-791
[37.]
L. Attisano, J.L. Wrana.
Signal transduction by the TGF-b superfamily.
Science, 296 (2002), pp. 1646-1647
[38.]
Ríos R. Regulación de la miogénesis por miostatina [tesis doctoral]. Santiago de Compostela: Servicio de Publicaciones de la Universidad de Santiago de Compostela; 2002.
[39.]
R. Ríos, V.M. Arce, J. Devesa.
Myostatin and the regulation of skeletal muscle development.
Recent Res Devel Endocrinol, 2 (2001), pp. 143-151
[40.]
A. Rebbapragada, H. Benchabane, J.L. Wrana, A.J. Celeste, L. Attisano.
Myostatin signals through a transforming growth factor ß-like signaling pathway to block adipogenesis.
Mol Cell Biol, 23 (2003), pp. 7230-7242
[41.]
S.-J. Lee.
Regulation of muscle mass by myostatin.
Annu Rev Cell Dev Biol, 20 (2004), pp. 61-86
[42.]
T.A. Zimmers, M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, et al.
Induction of cachexia in mice by systemically administered myostatin.
Science, 296 (2002), pp. 1486-1488
[43.]
K. Tsuchida, K.Y. Arai, Y. Kuramoto, N. Yamakawa, Y. Hasegawa, H. Sugino.
Identification and characterization of a novel follistatin like protein as a binding protein for the TGF-β family.
J Biol Chem, 75 (2000), pp. 40788-40796
[44.]
A. Scheneyer, D.V. Tortoriello, W.E. Holmes, Y. Pan, H.T. Keutmann, A.L. Schneyer.
Follistatin-related protein (FSRP): a new member of the follistatin gene family.
Mol Cell Endocrinol, 180 (2001), pp. 33-38
[45.]
S. Shimasaki, M. Koga, F. Esch, K. Cooksey, M. Mercado, A. Koba, et al.
Primary structure of the human follistatin precursor and its genomic organization.
Proc Natl Acad Sci USA, 85 (1988), pp. 4218-4222
[46.]
D.J. Phillips, D.M. De Krester.
Follistatin: a multifunctional regulatory protein.
Front Neurendocrinol, 19 (1998), pp. 287-322
[47.]
A. Delbaere, Y. Sidis, A.L. Schneyer.
Differential response to exogenous and endogenous activin in a human ovarian teratocarcinoma-derived cell line (PA-1): regulation by cell surface follistatin.
Endocrinology, 140 (1998), pp. 2463-2470
[48.]
S. Reisz-Porszasz, S. Bhasin, J.N. Artaza, R. Shen, I. Sinha-Hikim, A. Hogue, et al.
Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin.
Am J Physiol Endocrinol Metab, 285 (2003), pp. E876-E888
[49.]
K.A. Coerver.
Activin signaling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice.
Mol Endocrinol, 10 (1996), pp. 534-543
[50.]
H.S. Kim, L. Liang, R.G. Dean, D.B. Hausman, D.L. Hartzell, C.A. Baile.
Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures.
Biochem Biophys Res Commun, 281 (2001), pp. 902-906
[51.]
A.C. McPherron, S.J. Lee.
Suppression of body fat accumulation in myostatin-deficient mice.
J Clin Invest, 109 (2002), pp. 595-601
[52.]
M.W. Hamrick, A.C. McPherron, C.O. Lovejoy.
Bone mineral content and density in the humerus of adult myostatin-deficient mice.
Calcif Tissue Int, 71 (2002), pp. 63-68
[53.]
M.W. Hamrick, C. Pennington, C.D. Byron.
Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin).
J Orthop Res, 21 (2003), pp. 1025-1032
[54.]
K.R. Wagner, A.C. McPherron, N. Winik, J. Lee S-.
Loss of myostatin attenuates severity of muscular dystrophy in mdx mice.
Ann Neurol, 52 (2002), pp. 832-836
[55.]
S. Bogdanovich, T.OB. Krag, E.R. Barton, L.D. Morris, L.A. Whittemore, R.S. Ahima, et al.
Functional improvement of dystrophic muscle by myostatin blockade.
Nature, 420 (2002), pp. 418-421
[56.]
S. Bogdanovich, K.J. Perkins, T.OB. Krag, T.J. Khurana.
Therapeutics for Duchenne muscular dystrophy: current approaches and future directions.
J Mol Med, 82 (2004), pp. 102-115
[57.]
C. Huet, F. Li Z-, Z. Liu H-, R.A. Black, F. Galliano M-, E. Engvall.
Skeletal muscle hypertrophy induced by inhibitors of metallopreoteases; myostatin as a potential mediator.
Am J Physiol Cell Physiol, 281 (2001), pp. C1624-C1634
Copyright © 2005. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos