covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Las rutas de señales de la insulina: mecanismos de integración de la homeostas...
Información de la revista
Vol. 48. Núm. 10.
Páginas 295-302 (diciembre 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 10.
Páginas 295-302 (diciembre 2001)
Acceso a texto completo
Las rutas de señales de la insulina: mecanismos de integración de la homeostasis energética y la reproducción
Insulin signaling pathways: mechanisms integrating energy homeostasis and reproduction
Visitas
18389
J. Font de Mora Saínza,
Autor para correspondencia
jaime@gugu.usal.es

Correspondencia: Dr. J. Font de Mora. Centro de Investigación del Cáncer. Campus Miguel de Unamuno. Avda. Universidad de Coimbra, s/n. 37007 Salamanca
, D. Burksb
a Centro de Investigación del Cáncer. Salamanca. Harvard Medical School. Boston
b Diabetes Center. Harvard Medical School. Boston
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La reproducción en las hembras de mamíferos es extremadamente sensible a la disponibilidad de combustibles metabólicos. Esta relación entre la homeostasis energética y la reproducción ha sido reconocida durante décadas. Así, la restricción dietética intensa, los estados catabólicos y el exceso del gasto energético deterioran la fertilidad humana. Del mismo modo, la obesidad resultante de una mayor ingestión que la requerida por el cuerpo está asociada con situaciones de infertilidad como en el síndrome de ovarios policísticos. Por ello, la reproducción, la ingestión de alimento y la utilización de combustibles constituyen las respuestas homeostáticas reguladas por señales metabólicas. Así, la capacidad reproductiva en organismos inferiores como el gusano y la mosca está también influida por la disponibilidad de alimento y las reservas de energía. Sin embargo, el modo preciso de la regulación de la actividad reproductiva por la nutrición y la energía metabólica continúa siendo una cuestión sin resolver de la biología moderna. Se postula que la insulina es la principal hormona reguladora del metabolismo de hidratos de carbono en el organismo y junto con las rutas de señales dependientes de ella, desempeña un papel primordial en la homeostasis de combustibles metabólicos. Verificaciones recientes procedentes de modelos animales demuestran que la acción de la insulina también regula la ingestión de comida, el peso corporal y la capacidad de reproducción, implicando a las rutas de señalización de la insulina como la conexión mecanística entre el metabolismo y la regulación neuroendocrina de la fertilidad. La deleción de IRS-2, uno de los principales sustratos del receptor de insulina, produce en el ratón defectos tanto metabólicos como reproductivos. Las ratonas deficientes en IRS-2 demuestran una moderada intolerancia a glucosa, resistencia a insulina, hiperfagia y una discreta obesidad. Curiosamente, estos animales son infértiles debido a defectos en el ovario y/o en el eje hipotálamo-pituitario-ovárico. Aquí se revisan las perspectivas históricas del control metabólico de la reproducción haciendo un especial énfasis en las contribuciones de la señalización de la insulina. Además, nuestra revisión se centra en las observaciones recientes del modelo knockout de IRS-2, que nos ha proporcionado una evidencia directa de que la fertilidad requiere la integración de señales metabólicas y reproductivas. Basándonos en el papel de las rutas de señalización de la insulina en la regulación de la fertilidad, el metabolismo y la longevidad en C. elegans y Drosophila, nuestra hipótesis de trabajo es que las rutas de señales mediadas por IRS-2 representan un mecanismo conservado evolutivamente que comunica la homeostasis energética con la fisiología de la reproducción.

Palabras clave:
Insulina
Metabolismo
Reproducción
Proteínas IRS

In female mammals, reproduction is extremely sensitive to the availability of metabolic fuels. This relationship between energy homeostasis and reproduction has been recognized for decades; severe dietary restriction, catabolic states, and excess energy expenditure impair fertility in humans. Likewise, obesity, resulting from a greater consumption than is used by the body, is also associated with infertile conditions such as polycystic ovary syndrome. Thus, reproduction, food intake, and fuel utilization represent homeostatic responses that are modulated by metabolic signals. Interestingly, reproductive capacity in lower organisms such as C. elegans and Drosophila is also influenced by the availability of food and energy stores. However, precisely how nutrition and energy metabolism regulate reproductive activity remains one of the major unsolved questions of modern biology. As the principal hormone regulating carbohydrate metabolism, insulin and its signaling pathways have been postulated to play a major role in fuel homeostasis. However, recent evidence from mouse models demonstrates that insulin action also regulates food intake, body weight and reproductive capacity, implicating insulin signaling pathways as a mechanistic link between metabolism and neuroendocrine regulation of fertility. Deletion of IRS-2, one of the main substrates of the insulin receptor, produces both metabolic and reproductive defects in mice. Female IRS-2 deficient mice display moderately impaired glucose tolerance, insulin resistance, hyperphagia, and mild obesity. Interestingly, these animals are infertile owing to ovarian failure and/or defects in the hypothalamic-pituitary-ovarian axis. Here, we summarize the historic perspectives of the metabolic control of reproduction with a particular emphasis on the contributions of insulin signaling. Moreover, our review focuses on recent observations from the IRS-2 knockout model which have provided direct evidence that fertility requires the integration of metabolic and reproductive signals. Based on the role of insulinsignaling pathways in the regulation of fertility, metabolism, and longevity in C. elegans and Drosophila, our working hypothesis is that IRS2-mediated pathways represent an evolutionary conserved mechanism to link energy homeostasis to reproductive physiology.

Key words:
Insulin
Metabolism
Reproduction
IRS proteins
El Texto completo está disponible en PDF
Bibliografía
[1.]
G.N. Wade, J.E. Schneider.
Metabolic fuels and reproduction in female mammals.
Neurosci Biobehav Rev, 16 (1992), pp. 235-272
[2.]
J.E. Schneider, R.M. Blum, G.N. Wade.
Metabolic control of food intake and estrous cycles in syrian hamsters. I. Plasma insulin and leptin.
Am J Physiol Regul Integr Comp Physiol, 278 (2000), pp. R476-R485
[3.]
J.E. Schneider, D. Zhou, R.M. Blum.
Leptin and metabolic control of reproduction.
Horm Behav, 37 (2000), pp. 306-326
[4.]
G.N. Wade, J.E. Schneider, H.Y. Li.
Control of fertility by metabolic cues.
Am J Physiol, 270 (1996), pp. E1-E19
[5.]
D.E. Stewart.
Reproductive functions in eating disorders.
Ann Med, 24 (1992), pp. 287-291
[6.]
M.L. Griffin, S.A. South, V.I. Yankov, R.A. Booth, C.M. Asplin, J.D. Veldhuis, et al.
Insulin-dependent diabetes mellitus and menstrual dysfunction.
Ann Med, 26 (1994), pp. 331-340
[7.]
E. Haller.
Eating disorders. A review and update.
West J Med, 157 (1992), pp. 658-662
[8.]
M.J. De Souza, D.A. Metzger.
Reproductive dysfunction in amenorrheic athletes and anorexic patients: a review.
Med Sci Sports Exerc, 23 (1991), pp. 995-1007
[9.]
L.A. Campfield, F.J. Smith, Y. Guisez, R. Devos, P. Burn.
Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks.
Science, 269 (1995), pp. 546-549
[10.]
J.M. Friedman.
The alphabet of weight control.
Nature, 385 (1997), pp. 119-120
[11.]
J.M. Friedman.
Leptin, leptin receptors, and the control of body weight.
Nutr Rev, 56 (1998), pp. S38-S46
[12.]
J.K. Elmquist, E. Maratos-Flier, C.B. Saper, J.S. Flier.
Unraveling the central nervous system pathways underlying responses to leptin.
Nat Neurosci, 1 (1998), pp. 445-450
[13.]
J. Flier, E. Maratos-Flier.
Energy homeostasis and body weight.
Curr Biol, 10 (2000), pp. R215-R217
[14.]
J.C. Kennedy.
The role of the fat depot in the hypothalamic control of food intake in the rat.
Proc R Soc Lond B, 140 (1953), pp. 578-592
[15.]
D.G. Baskin, D. Figlewicz Lattemann, R.J. Seeley, S.C. Woods, D. Porte, et al.
Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight.
Brain Res, 848 (1999), pp. 114-123
[16.]
D.L. Foster, S. Nagatani.
Physiological perspectives on leptin as a regulator of reproduction: role in timing puberty.
Biol Reprod, 60 (1999), pp. 205-215
[17.]
G.A. Bray.
Etiology and pathogenesis of obesity.
Clin Cornerstone, 2 (1999), pp. 1-15
[18.]
M.W. Schwartz, S.E. Kahn.
Insulin resistance and obesity.
Nature, 402 (1999), pp. 860-861
[19.]
A.M. Venkatesan, A. Dunaif, A. Corbould.
Insulin resistance in polycystic ovary syndrome: progress and paradoxes.
Recent Prog Horm Res, 56 (2001), pp. 295-308
[20.]
S. Franks, C. Gilling-Smith, H. Watson, D. Willis.
Insulin action in the normal and polycystic ovary.
Endocrinol Metab Clin North Am, 28 (1999), pp. 361-378
[21.]
G. Gennarelli, J. Holte, L. Wide, C. Berne, H. Lithell.
Is there a role for leptin in the endocrine and metabolic aberrations of polycystic ovary syndrome?.
Hum Reprod, 13 (1998), pp. 535-541
[22.]
R.J. Norman, A.M. Clark.
Obesity and reproductive disorders: a review.
Reprod Fertil Dev, 10 (1998), pp. 55-63
[23.]
M.M. Huber-Buchholz, D.G. Carey, R.J. Norman.
Restoration of reproductive potential by lifestyle modification in obese polycystic ovary syndrome: role of insulin sensitivity and luteinizing hormone.
J Clin Endocrinol Metab, 84 (1999), pp. 1470-1474
[24.]
R.S. Ahima, J.S. Flier.
Adipose tissue as an endocrine organ.
Trends Endocrinol Metab, 11 (2000), pp. 327-332
[25.]
B. Beck.
Neuropeptides and obesity.
Nutrition, 16 (2000), pp. 916-923
[26.]
J.M. Friedman, J.L. Halaas.
Leptin and the regulation of body weight in mammals.
Nature, 395 (1998), pp. 763-770
[27.]
Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman.
Positional cloning of the mouse obese gene and its human homologue.
Nature, 372 (1994), pp. 425-432
[28.]
M. Maffei, J. Halaas, E. Ravussin, R.E. Pratley, G.H. Lee, Y. Zhang, et al.
Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects.
Nat Med, 1 (1995), pp. 1155-1161
[29.]
M. Maffei, H. Fei, G.H. Lee, C. Dani, P. Leroy, Y. Zhang, et al.
Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus.
Proc Natl Acad Sci USA, 92 (1995), pp. 6957-6960
[30.]
S.L. Cohen, J.L. Halaas, J.M. Friedman, B.T. Chait, L. Bennett, D. Chang, et al.
Human leptin characterization.
Nature, 382 (1996), pp. 589
[31.]
J.F. Caro, M.K. Sinha, J.W. Kolaczynski, P.L. Zhang, R.V. Considine.
Leptin: the tale of an obesity gene.
Diabetes, 45 (1996), pp. 1455-1462
[32.]
Y. Suresh, U.N. Das.
Leptin—the fat controller.
J Assoc Physicians India, 46 (1998), pp. 538-544
[33.]
C. Bjorbaek, J.K. Elmquist, P. Michl, R.S. Ahima, A. Van Bueren, A.L. McCall, et al.
Expression of leptin receptor isoforms in rat brain microvessels.
Endocrinology, 139 (1998), pp. 3485-3491
[34.]
R. Devos, J.G. Richards, L.A. Campfield, L.A. Tartaglia, Y. Guisez, J. Van der Heyden, et al.
OB protein binds specifically to the choroid plexus of mice and rats.
Proc Natl Acad Sci USA, 93 (1996), pp. 5668-5673
[35.]
J.K. Elmquist, C. Bjorbaek, R.S. Ahima, J.S. Flier, C.B. Saper.
Distributions of leptin receptor mRNA isoforms in the rat brain.
J Comp Neurol, 395 (1998), pp. 535-547
[36.]
J.L. Halaas, J.M. Friedman.
Leptin and its receptor.
J Endocrinol, 155 (1997), pp. 215-216
[37.]
G. Williams, J.A. Harrold, D.J. Cutler.
The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box.
Proc Nutr Soc, 59 (2000), pp. 385-396
[38.]
K.F. Malik, W.S. Young.
3rd. Localization of binding sites in the central nervous system for leptin (OB protein) in normal, obese (ob/ob), and diabetic (db/db) C57BL/6J mice.
Endocrinology, 137 (1996), pp. 1497-1500
[39.]
K.A. al-Barazanji, R.E. Buckingham, J.R. Arch, A. Haynes, D.E. Mossakowska, D.L. McBay, et al.
Effects of intracerebroventricular infusion of leptin in obese Zucker rats.
Obes Res, 5 (1997), pp. 387-394
[40.]
R.J. Seeley, G. Van Dijk, L.A. Campfield, F.J. Smith, P. Burn, J.A. Nelligan, et al.
Intraventricular leptin reduces food intake and body weight of lean rats but not obese Zucker rats.
Horm Metab Res, 28 (1996), pp. 664-668
[41.]
N.A. Tritos, J.K. Elmquist, J.W. Mastaitis, J.S. Flier, E. Maratos-Flier.
Characterization of expression of hypothalamic appetite-regulating peptides in obese hyperleptinemic brown adipose tissue-deficient (uncoupling protein-promoter-driven diphtheria toxin A) mice.
Endocrinology, 139 (1998), pp. 4634-4641
[42.]
J.L. Halaas, K.S. Gajiwala, M. Maffei, S.L. Cohen, B.T. Chait, D. Rabinowitz, et al.
Weight-reducing effects of the plasma protein encoded by the obese gene.
Science, 269 (1995), pp. 543-546
[43.]
A.J. Woods, M.J. Stock.
Leptin activation in hypothalamus.
Nature, 381 (1996), pp. 745
[44.]
M.A. Pelleymounter, M.J. Cullen, M.B. Baker, R. Hecht, D. Winters, T. Boone, et al.
Effects of the obese gene product on body weight regulation in ob/ob mice.
Science, 269 (1995), pp. 540-543
[45.]
B.C. Moon, J.M. Friedman.
The molecular basis of the obese mutation in ob2J mice.
Genomics, 42 (1997), pp. 152-156
[46.]
H. Chen, O. Charlat, L.A. Tartaglia, E.A. Woolf, X. Weng, S.J. Ellis, et al.
Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.
Cell, 84 (1996), pp. 491-495
[47.]
L.A. Tartaglia, M. Dembski, X. Weng, N. Deng, J. Culpepper, R. Devos, et al.
Identification and expression cloning of a leptin receptor, OB-R.
Cell, 83 (1995), pp. 1263-1271
[48.]
C. Vaisse, J.L. Halaas, C.M. Horvath, J.E. Darnell Jr, M. Stoffel, J.M. Friedman.
Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice.
Nat Genet, 14 (1996), pp. 95-97
[49.]
P. Magni, M. Motta, L. Martini.
Leptin: a possible link between food intake, energy expenditure, and reproductive function.
Regul Pept, 92 (2000), pp. 51-56
[50.]
F.F. Chehab.
The reproductive side of leptin.
Nat Med, 3 (1997), pp. 952-953
[51.]
K. Mounzih, R. Lu, F.F. Chehab.
Leptin treatment rescues the sterility of genetically obese ob/ob males.
Endocrinology, 138 (1997), pp. 1190-1193
[52.]
F.F. Chehab, M.E. Lim, R. Lu.
Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin.
Nat Genet, 12 (1996), pp. 318-320
[53.]
J.M. Friedman.
Obesity in the new millennium.
Nature, 404 (2000), pp. 632-634
[54.]
F.H. Bronson, F.A. Marsteller.
Effect of short-term food deprivation on reproduction in female mice.
Biol Reprod, 33 (1985), pp. 660-667
[55.]
F.H. Bronson, P.D. Heideman.
Short-term hormonal responses to food intake in peripubertal female rats.
Am J Physiol, 259 (1990), pp. R25-R31
[56.]
S.M. Hileman, D.D. Pierroz, J.S. Flier.
Leptin, nutrition, and reproduction: timing is everything.
J Clin Endocrinol Metab, 85 (2000), pp. 804-807
[57.]
J.E. Schneider, M.D. Goldman, S. Tang, B. Bean, H. Ji, M.I. Friedman.
Leptin indirectly affects estrous cycles by increasing metabolic fuel oxidation.
Horm Behav, 33 (1998), pp. 217-228
[58.]
D.J. Burks, J. Font de Mora, M. Schubert, D.J. Withers, M.G. Myers, H.H. Towery, et al.
IRS-2 pathways integrate female reproduction and energy homeostasis.
Nature, 407 (2000), pp. 377-382
[59.]
S.F. Previs, D.J. Withers, J.M. Ren, M.F. White, G.I. Shulman.
Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo.
J Biol Chem, 275 (2000), pp. 38990-38994
[60.]
S. Farooqi, H. Rau, J. Whitehead, S. O'Rahilly.
ob gene mutations and human obesity.
Proc Nutr Soc, 57 (1998), pp. 471-475
[61.]
I.S. Farooqi, S.A. Jebb, G. Langmack, E. Lawrence, C.H. Cheetham, A.M. Prentice, et al.
Effects of recombinant leptin therapy in a child with congenital leptin deficiency.
N Engl J Med, 341 (1999), pp. 879-884
[62.]
S. O'Rahilly.
Life without leptin.
Nature, 392 (1998), pp. 330-331
[63.]
S. Franks, H. Mason, D. White, D. Willis.
Etiology of anovulation in polycystic ovary syndrome.
Steroids, 63 (1998), pp. 306-307
[64.]
J.E. Nestler, D.J. Jakubowicz, A.F. De Vargas, C. Brik, N. Quintero, F. Medina.
Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system.
J Clin Endocrinol Metab, 83 (1998), pp. 2001-2005
[65.]
J. Zhao, M.A. Taverne, G.C. Van Der Weijden, M.M. Bevers, R. Van Den Hurk.
Insulin-like growth factor-I (IGF-I) stimulates the development of cultured rat pre-antral follicles.
[66.]
G.A. Werther, A. Hogg, B.J. Oldfield, M.J. McKinley, R. Figdor, A.M. Allen, et al.
Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry.
Endocrinology, 121 (1987), pp. 1562-1570
[67.]
J.W. Unger, M. Betz.
Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications.
Histol Histopathol, 13 (1998), pp. 1215-1224
[68.]
J.W. Unger, W. Lange.
Insulin receptors in the pituitary gland: morphological evidence for influence on opioid peptide-synthesizing cells.
Cell Tissue Res, 288 (1997), pp. 471-483
[69.]
S.C. Woods, E.C. Lotter, L.D. McKay, D. Porte Jr..
Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons.
Nature, 282 (1979), pp. 503-505
[70.]
D.G. Baskin, D.P. Figlewicz, S.C. Woods, D. Porte Jr, D.M. Dorsa.
Insulin in the brain.
Annu Rev Physiol, 49 (1987), pp. 335-347
[71.]
L.A. Foster, N.K. Ames, R.S. Emery.
Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I.
Physiol Behav, 50 (1991), pp. 745-749
[72.]
S.C. Woods, L.J. Stein, L.D. McKay, D. Porte Jr..
Suppression of food intake by intravenous nutrients and insulin in the baboon.
Am J Physiol, 247 (1984), pp. R393-R401
[73.]
K.J. Kaiyala, R.L. Prigeon, S.E. Kahn, S.C. Woods, M.W. Schwartz.
Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs.
Diabetes, 49 (2000), pp. 1525-1533
[74.]
J.C. Bruning, D. Gautam, D.J. Burks, J. Gillette, M. Schubert, P.C. Orban, et al.
Role of brain insulin receptor in control of body weight and reproduction.
Science, 289 (2000), pp. 2122-2125
[75.]
C.R. Kahn, F. Folli.
Molecular determinants of insulin action.
Horm Res, 39 (1993), pp. 93-101
[76.]
M.G. Myers, M.F. White.
Insulin signal transduction and the IRS proteins.
Annu Rev Pharmacol Toxicol, 36 (1996), pp. 615-658
[77.]
M.F. White.
The insulin signalling system and the IRS proteins.
Diabetologia, 40 (1997), pp. S2-S17
[78.]
E. Araki, M.A. Lipes, M.E. Patti, J.C. Bruning, B. Haag, R.S. Johnson, et al.
Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene.
Nature, 372 (1994), pp. 186-190
[79.]
X.J. Sun, S. Pons, L.M. Wang, Y. Zhang, L. Yenush, D. Burks, et al.
The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action.
Mol Endocrinol, 11 (1997), pp. 251-262
[80.]
S.C. Liu, Q. Wang, G.E. Lienhard, S.R. Keller.
Insulin receptor substrate 3 is not essential for growth or glucose homeostasis.
J Biol Chem, 274 (1999), pp. 18093-18099
[81.]
B.E. Lavan, W.S. Lane, G.E. Lienhard.
The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family.
J Biol Chem, 272 (1997), pp. 11439-11443
[82.]
J. Smith-Hall, S. Pons, M.E. Patti, D.J. Burks, L. Yenush, X.J. Sun, et al.
The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells.
Biochemistry, 36 (1997), pp. 8304-8310
[83.]
V.R. Fantin, B.E. Lavan, Q. Wang, N.A. Jenkins, D.J. Gilbert, N.G. Copeland, et al.
Cloning, tissue expression, and chromosomal location of the mouse insulin receptor substrate 4 gene.
Endocrinology, 140 (1999), pp. 1329-1337
[84.]
V.R. Fantin, S.R. Keller, G.E. Lienhard, L.M. Wang.
Insulin receptor substrate 4 supports insulin-and interleukin 4-stimulated proliferation of hematopoietic cells.
Biochem Biophys Res Commun, 260 (1999), pp. 718-723
[85.]
B.E. Lavan, V.R. Fantin, E.T. Chang, W.S. Lane, S.R. Keller, G.E. Lienhard.
A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family.
J Biol Chem, 272 (1997), pp. 21403-21407
[86.]
D.J. Withers, J.S. Gutiérrez, H. Towery, D.J. Burks, J.M. Ren, S. Previs, et al.
Disruption of IRS-2 causes type 2 diabetes in mice.
Nature, 391 (1998), pp. 900-904
[87.]
D.J. Withers, D.J. Burks, H.H. Towery, S.L. Altamuro, C.L. Flint, M.F. White.
Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling.
Nat Genet, 23 (1999), pp. 32-40
[88.]
Y. Kido, D.J. Burks, D. Withers, J.C. Bruning, C.R. Kahn, M.F. White, et al.
Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2.
J Clin Invest, 105 (2000), pp. 199-205
[89.]
M.W. Schwartz.
Biomedicine. Staying slim with insulin in mind.
Science, 289 (2000), pp. 2066-2067
[90.]
S.C. Woods, M. Chávez, C.R. Park, C. Riedy, K. Kaiyala, R.D. Richardson, et al.
The evaluation of insulin as a metabolic signal influencing behavior via the brain.
Neurosci Biobehav Rev, 20 (1996), pp. 139-144
[91.]
M. Kellerer, M. Koch, E. Metzinger, J. Mushack, H.U. Capp EHaring.
Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways.
Diabetologia, 40 (1997), pp. 1358-1362
[92.]
I. Szanto, C.R. Kahn.
Selective interaction between leptin and insulin signaling pathways in a hepatic cell line.
Proc Natl Acad Sci USA, 97 (2000), pp. 2355-2360
[93.]
S. Ogg, S. Paradis, S. Gottlieb, G.I. Patterson, L. Lee, H.A. Tissenbaum, et al.
The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans.
Nature, 389 (1997), pp. 994-999
[94.]
J. Apfeld, C. Kenyon.
Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span.
Cell, 95 (1998), pp. 199-210
[95.]
J.Y. Sze, M. Victor, C. Loer, Y. Shi, G. Ruvkun.
Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant.
Nature, 403 (2000), pp. 560-564
[96.]
J.B. Dorman, B. Albinder, T. Shroyer, C. Kenyon.
The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans.
Genetics, 141 (1995), pp. 1399-1406
[97.]
K.D. Kimura, H.A. Tissenbaum, Y. Liu, G. Ruvkun.
daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans.
Science, 277 (1997), pp. 942-946
[98.]
S. Paradis, G. Ruvkun.
Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor.
Genes Dev, 12 (1998), pp. 2488-2498
[99.]
H. Hsin, C. Kenyon.
Signals from the reproductive system regulate the lifespan of C. elegans.
Nature, 399 (1999), pp. 362-366
[100.]
H.A. Tissenbaum, G. Ruvkun.
An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans.
Genetics, 148 (1998), pp. 703-717
[101.]
C.A. Wolkow, K.D. Kimura, M.S. Lee, G. Ruvkun.
Regulation of C. elegans life-span by insulin-like signaling in the nervous system.
Science, 290 (2000), pp. 147-150
[102.]
R. Bohni, J. Riesgo-Escovar, S. Oldham, W. Brogiolo, H. Stocker, B.F. Andruss, et al.
Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS 1-4.
Cell, 97 (1999), pp. 865-875
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos