covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Mecanismos de regulación por hormona tiroidea en el desarrollo neural
Información de la revista
Vol. 48. Núm. 7.
Páginas 202-216 (agosto 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 7.
Páginas 202-216 (agosto 2001)
Acceso a texto completo
Mecanismos de regulación por hormona tiroidea en el desarrollo neural
Thyroid hormones and brain development
Visitas
23557
J. Bernal
Autor para correspondencia
jbernal@iib.uam.es

Correspondencia: Prof. J. Bernal. Instituto de Investigaciones Biomédicas. Arturo Duperier, 4. 28029 Madrid. En esta revisión el término “hormonas tiroideas” se refiere a los productos de la glándula tiroides,T4 (tiroxina 3,5,3’,5’-tetrayodo-L-tironina) y T3 (3,5,3’-tryodo-L-tironina). En singular, “hormona tiroidea” se refiere al producto activo, T3, que se une al receptor nuclear e induce respuestas genómicas.
Instituto de Investigaciones Biomédicas Alberto Sols. Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Las hormonas tiroideas intervienen de forma crítica en el desarrollo del sistema nervioso central. El hipotiroidismo fetal y/o neonatal ocasiona defectos de mielinización, así como de migración y diferenciación neuronales, que dan lugar a retraso mental y síntomas neurológicos. La mayoría de las acciones de las hormonas tiroideas son debidas a la interacción de la forma activa, T3, con receptores nucleares que están ya presentes en el cerebro fetal de rata el día 14 después de la concepción, y en el feto humano en la décima semana de gestación. Las hormonas tiroideas presentes en el feto pueden ser de procedencia materna o fetal. La T4 de origen materno contribuye más del 50% de la T4 fetal a término. La concentración de T3 en el sistema nervioso central está estrechamente regulada por las desyodasas tipos II y III. La desyodasa tipo II, que se expresa en tanicitos y en astrocitos, genera localmente, a partir de T4, la mayor parte de T3 presente en el sistema nervioso. La desyodasa tipo III, en neuronas, degrada T4 y T3 a metabolitos inactivos. La hormona tiroidea regula la expresión de una serie de genes que codifican proteínas de diversa función fisiológica: proteínas de mielina, proteínas implicadas en la adhesión y migración celulares, proteínas de señalización, componentes del citosqueleto, proteínas mitocondriales, factores de transcripción, etc. El papel de la hormona tiroidea es el de ajustar los niveles de expresión, a la alta o a la baja, durante un período corto del desarrollo. Sólo una pequeña fracción de los genes identificados son regulados en sistema nervioso central adulto. En la mayoría de los casos, el papel de la hormona tiroidea consiste en acelerar los cambios de expresión que ocurren durante el desarrollo, sin influir en la concentración final del producto génico que, aunque con retraso, llega a alcanzar un valor normal en animales hipotiroideos, aun en ausencia de tratamiento. Desde el punto de vista clínico, aparte de los síndromes por deficiencia profunda de yodo, o hipotiroidismo congénito, se está prestando especial atención a los estados de hipotiroxinemia materna.

Palabras clave:
Cretinismo
Hipotiroxinemia
Expresión génica
Hormonas tiroideas
Receptores nucleares
Desarrollo cerebral
Desyodasas

Thyroid hormones are critically involved in brain maturation. Fetal and neonatal hypothyroidism leads to defects of cell migration and differentiation and to hypomyelination, with different degrees of mental retardation and neurological symptoms. Most actions of thyroid hormones are due to interactions of triiodothyronine (T3) with nuclear receptors which are present in the rat from embryonic day 14, and in the human at least from the end of the first trimester of pregnancy. Brain T3 is tightly regulated by the actions of deiodinases II and III. The former produces T3 from T4, which might be of maternal or fetal origin. Maternal hypothyroxinemic states may have consequences in fetal brain development. Deiodinase type II is predominantly expressed in the tanycytes lining the wall of the third ventricle and in astrocytes. T3 is inactivated by type III deiodinase, present in neurons, and abundantly expressed in the fetal and early postnatal periods. A number of genes have been identified as regulated by thyroid hormones in the rat brain, including genes encoding myelin proteins, proteins involved in intracellular signalling, neurotrophins and their receptors, cytoskeletal components, mitochondrial proteins, cell adhesion molecules, extracellular matrix proteins, transcription factors, and cerebellar-specific genes. Thyroid hormones induce either upregulation or downregulation of gene expression during development and most genes are sensitive to thyroid hormones only during a narrow time window and, with some exceptions, are not regulated in adult brain. In most cases the role of thyroid hormones is to accelerate developmental changes in gene expression, without influencing the final concentration of particular gene products, most of which normalize spontaneously in hypothyroid animals even in the absence of treatment. Many problems remain to be solved, mostly the molecular basis for the regional restriction of hormonal action and during limited developmental windows, and the individual role of the different T3 receptor isoforms. In addition, it is very likely that the genes identified so far are only a small fraction of a large gene network regulated by thyroid hormones.

Key words:
Cretinism
Hypothyroxinemia
Gene supression
Thyroid hormones
Nuclear receptors
Brain development
Deiodinases
El Texto completo está disponible en PDF
Bibliografía
[1.]
G. Morreale de Escobar, F. Escobar del Rey, A. Ruiz-Marcos.
Thyroid hormone and the developing brain.
Congenital hypothyroidism, pp. 85-126
[2.]
J. Bernal, J. Núñez.
Thyroid hormones and brain development.
Eur J Endocrinol, 133 (1995), pp. 390-398
[3.]
J. Bernal, A. Guadaño-Ferraz.
Thyroid hormone and the development of the brain.
Curr Op Endocrinol Diabetes, 5 (1998), pp. 296-302
[4.]
A. Muñoz, J. Bernal.
Biological activities of thyroid hormone receptors.
Eur J Endocrinol, 137 (1997), pp. 433-445
[5.]
J. Legrand.
Effects of thyroid hormones on central nervous system.
Neurobehavioral teratology, pp. 331-363
[6.]
J.H. Oppenheimer, H.L. Schwartz.
Molecular basis of thyroid hormonedependent brain development.
Endocr Rev, 18 (1997), pp. 462-475
[7.]
S.P. Porterfield, C.E. Hendrich.
The role of thyroid hormones in prenatal and neonatal neurological development: current perspectives.
Endocr Rev, 14 (1993), pp. 94-106
[8.]
Jr Hollowell JG, W.H. Hannon.
Teratogen update: iodine deficiency, a community teratogen.
[9.]
G. Morreale de Escobar, M.J. Obregón, F. Escobar del Rey.
Is neuropsychological development related to maternal hypothyroidism, or to maternal hypothyroxinemia?.
J Clin Endocrinol Metab, 85 (2000), pp. 3975-3987
[10.]
A.B. Holt, M.B. Renfree, D.B. Chek.
Comparative aspects of brain growth: a critical evaluation of mammalian species used in brain growth research with emphasis on the Tammar wallaby.
Fetal brain disorders. Recent approaches to the problem of mental deficiency, pp. 17-43
[11.]
J.L. Nicholson, J. Altman.
The effects of early hypo-and hyperthyroidism on the development of the rat cerebellar cortex. I. Cell proliferation and differentiation.
Brain Res, 44 (1972), pp. 13-23
[12.]
M. Marin-Padilla.
Three-dimensional structural organization of layer I of the human cerebral cortex: a Golgi study.
J Comp Neurol, 299 (1990), pp. 89-105
[13.]
Jr Caviness VS, R.L. Sidman.
Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis.
J Comp Neurol, 148 (1973), pp. 141-151
[14.]
L.F. García-Fernández, E. Rausell, Y. Urade, O. Hayaishi, J. Bernal, A. Muñoz.
Hypothyroidism alters the expression of prostaglandin D2 synthase/beta trace in specific areas of the developing rat brain.
Eur J Neurosci, 9 (1997), pp. 1566-1573
[15.]
M. Álvarez-Dolado, M. Ruiz, J.A. Del Rio, S. Alcántara, F. Burgaya, M. Sheldon, et al.
Thyroid hormone regulates reelin and dab1 expression during brain development.
J Neurosci, 19 (1999), pp. 6973-6979
[16.]
C. Gravel, R. Hawkes.
Maturation of the corpus callosum of the rat: I. Influence of thyroid hormones on the topography of callosal projections.
J Comp Neurol, 291 (1990), pp. 128-146
[17.]
P. Berbel, A. Guadano-Ferraz, M. Martínez, J.A. Quiles, R. Balboa, G.M. Innocenti.
Organization of auditory callosal connections in hypothyroid adult rats.
Eur J Neurosci, 5 (1993), pp. 1465-1478
[18.]
R.A. Lucio, J.V. García, J. Ramón Cerezo, P. Pacheco, G.M. Innocenti, P. Berbel.
The development of auditory callosal connections in normal and hypothyroid rats.
Cereb Cortex, 7 (1997), pp. 303-316
[19.]
R. Lavado, E. Ansó, F. Escobar del Rey, G. Morreale de Escobar, P. Berbel.
Hypothyroxinemia, induced by a low iodine diet, alters cortical cell migration in rats: an experimental model for human neurological cretinism. Federation of the European Neuroscience Societies (FENS) 2000.
Brighton, (2000),
[20.]
J. Legrand.
Analyse de l'action morphogénétic des hormones thyroïdiennes sur le cervelet du jeune rat.
Arch Anat Microsc Morphol Exp, 56 (1967), pp. 205-244
[21.]
E. Gould, L.L. Butcher.
Developing cholinergic basal forebrain neurons are sensitive to thyroid hormone.
J Neurosci, 9 (1989), pp. 3347-3358
[22.]
C. Gravel, R. Sasseville, R. Hawkes.
Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons.
J Comp Neurol, 291 (1990), pp. 147-161
[23.]
E. Gould, M.D. Allan, B.S. McEwen.
Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone.
Brain Res, 525 (1990), pp. 327-329
[24.]
A. Ruiz-Marcos, P. Cartagena, A. García, F. Escobar del Rey, G. Morreale de Escobar.
Rapid effects of adult-onset hypothyroidism on dendritic spines of pyramidal cells of the rat cerebral cortex.
Exp Brain Res, 73 (1988), pp. 583-588
[25.]
R. Balazs, BWL Brooksbank, A.N. Davison, J.T. Eayrs, D.A. Wilson.
The effect of neonatal thyroidectomy on myelination in the rat brain.
Brain Res, 15 (1969), pp. 219-232
[26.]
M.J. Malone, N.P. Rosman, M. Szoke, D. Davis.
Myelination of brain in experimental hypothyroidism. An electron-microscopic and biochemical study of purified myelin isolates.
J Neurol Sci, 26 (1975), pp. 1-11
[27.]
T. Noguchi, T. Sugisaki.
Hypomyelination in the cerebrum of the congenitally hypothyroid mouse (hyt).
J Neurochem, 42 (1984), pp. 891-893
[28.]
A.M. Adamo, P.A. Aloise, E.F. Soto, J.M. Pasquini.
Neonatal hyperthyroidism in the rat produces an increase in the activity of microperoxisomal marker enzymes coincident with biochemical signs of accelerated myelination.
J Neurosci Res, 25 (1990), pp. 353-359
[29.]
P. Berbel, A. Guadaño-Ferraz, A. Angulo, J.R. Cerezo.
Role of thyroid hormones in the maturation of interhemispheric connections in rat.
Behav Brain Res, 64 (1994), pp. 9-14
[30.]
P.J. Davis, F.B. Davis.
Nongenomic actions of thyroid hormone.
Thyroid, 6 (1999), pp. 497-504
[31.]
RCJ Ribeiro, J.W. Appriletti, R.L. Wagner, B.L. West, W. Feng, R. Huber, et al.
Mechanisms of thyroid hormone action: insights from X-ray crystallographic and functional studies.
Rec Prog Horm Res, 53 (1998), pp. 351-394
[32.]
A.P. Wolffe, T.N. Collingwood, Q. Li, J. Yee, F. Urnov, Y.B. Shi.
Thyroid hormone receptor, v-ErbA, and chromatin.
Vitam Horm, 58 (2000), pp. 449-492
[33.]
S. Izumo, V. Mahdavi.
Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription.
Nature (Lond), 334 (1988), pp. 539-542
[34.]
M.A. Lazar, R.A. Hodin, D.S. Darling, W.W. Chin.
A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbA alpha transcriptional unit.
Mol Cell Biol, 9 (1989), pp. 1128-1136
[35.]
N. Miyajima, R. Horiuchi, Y. Shibuya, S. Fukushige, K. Matsubara, K. Toyoshima, et al.
Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite ADN strands of the same genetic locus.
Cell, 57 (1989), pp. 31-39
[36.]
G.R. Williams.
Cloning and characterization of two novel thyroid hormone receptor beta isoforms.
Mol Cell Biol, 20 (2000), pp. 8329-8342
[37.]
O. Chassande, A. Fraichard, K. Gauthier, F. Flamant, C. Legrand, P. Savatier, et al.
Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities.
Mol Endocrinol, 11 (1997), pp. 1278-1290
[38.]
J. Sap, A. Muñoz, J. Schmitt, H. Stunnenberg, B. Vennström.
Repression of transcription mediated at a thyroid hormone response element by the v-erbA oncogene product.
Nature, 340 (1989), pp. 242-244
[39.]
N.J. McKenna, R.B. Lanz, B.W. O'Malley.
Nuclear receptor coregulators: cellular and molecular biology.
Endocr Rev, 20 (1999), pp. 321-344
[40.]
B.D. Lemon, L.P. Freedman.
Nuclear receptor cofactors as chromatin remodelers.
Curr Op Genet Devel, 9 (1999), pp. 499-504
[41.]
Q. Li, L. Sachs, Y.B. Shi, A.P. Wolffe.
Modification of chromatin structure by the thyroid hormone receptor.
Trends Endocrinol Metab, 10 (1999), pp. 157-164
[42.]
L.J. Burke, A. Baniahmad.
Co-repressors 2000.
FASEB J, 14 (2000), pp. 1876-1888
[43.]
V. Perissi, L.M. Staszewski, E.M. McInerney, R. Kurokawa, A. Krones, D.W. Rose, et al.
Molecular determinants of nuclear receptor-corepressor interaction.
Genes Dev, 13 (1999), pp. 3198-3208
[44.]
A. Pérez-Castillo, J. Bernal, B. Ferreiro, T. Pans.
The early ontogenesis of thyroid hormone receptor in the rat fetus.
Endocrinology, 117 (1985), pp. 2457-2461
[45.]
K.A. Strait, H.L. Schwartz, A. Perezcastillo, J.H. Oppenheimer.
Relationship of c-erbA Messenger RNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats.
J Biol Chem, 265 (1990), pp. 10514-10521
[46.]
B. Ferreiro, R. Pastor, J. Bernal.
T3 receptor occupancy and T3 levels in plasma and cytosol during rat brain development.
Acta Endocrinol (Copenh), 123 (1990), pp. 95-99
[47.]
J. Iskaros, M. Pickard, I. Evans, A. Sinha, P. Hardiman, R. Ekins.
Thyroid hormone receptor gene expression in first trimester human fetal brain.
J Clin Endocrinol Metabol, 85 (2000), pp. 2620-2623
[48.]
J. Bernal, F. Pekonen.
Ontogenesis of the nuclear 3,5,3'-triiodothyronine receptor in the human fetal brain.
Endocrinology, 114 (1984), pp. 677-679
[49.]
J.E. Pintar.
Normal development of the hypothalamic-pituitary-thyroid axis.
Utiger, RD, editores. Werner and Ingbar's the thyroid, a fundamental and clinical text, pp. 7-19
[50.]
B. Ferreiro, J. Bernal, C.G. Goodyer, C.L. Branchard.
Estimation of nuclear thyroid hormone receptor saturation in human fetal brain and lung during early gestation.
J Clin Endocrinol Metabol, 67 (1988), pp. 853-856
[51.]
B. Ferreiro, J. Bernal, B.J. Potter.
Ontogenesis of thyroid hormone receptor in fetal lambs.
Acta Endocrinol (Copenh), 116 (1987), pp. 205-210
[52.]
V.M. Darras, R. Hume, T.J. Visser.
Regulation of thyroid hormone metabolism during fetal development.
Mol Cell Endocrinol, 25 (1999), pp. 37-47
[53.]
W. Croteau, J.C. Davey, V.A. Galton.
St. Germain DL. Cloning of the mammalian type II iodothyronine deiodinase: a selenoprotein differentially expressed and regulated in the human brain and other tissues.
J Clin Invest, 98 (1996), pp. 405-417
[54.]
D.J. Bradley, H.C. Towle, W.S. Young.
Spatial and temporal expression of a-and b-thyroid hormone receptor mRNAs, including the b2-subtype, in the developing mammalian nervous system.
J Neurosci, 12 (1992), pp. 2288-2302
[55.]
D. Forrest, F. Hallbook, H. Persson, B. Vennstrom.
Distinct functions for thyroid hormone receptors-alpha and receptor-beta in brain development indicated by differential expression of receptor genes.
EMBO J, 10 (1991), pp. 269-275
[56.]
B. Mellström, J.R. Naranjo, A. Santos, A.M. González, J. Bernal.
Independent expression of the a and b c-erbA genes in developing rat brain.
Mol Endocrinol, 5 (1991), pp. 1339-1350
[57.]
R.A. Hodin, M.A. Lazar, B.I. Wintman, D.S. Darling, R.J. Koening, P.R. Larsen, et al.
Identification of a thyroid hormone receptor that is pituitaryspecific.
Science (Wash), 244 (1989), pp. 76-79
[58.]
H.L. Schwartz, M.A. Lazar, J.H. Oppenheimer.
Widespread distribution of immunoreactive thyroid hormone b2 receptor (TRb2) in the nuclei of extrapituitary rat tissues.
J Biol Chem, 269 (1994), pp. 24777-24782
[59.]
R.M. Lechan, Y. Qi, T.J. Berrodin, K.D. Davis, H.L. Schwartz, K.A. Strait, et al.
Immunocytochemical delineation of thyroid hormone receptor b2-like immunoreactivity in the rat central nervous system.
Endocrinology, 132 (1993), pp. 2461-2469
[60.]
S. Ercan-Fang, H.L. Schwartz, J.H. Oppenheimer.
Isoform specific 3,5,3'-triiodothyronine receptor binding capacity and messenger ribonucleic acid content in rat adenohypophysis: effect of thyroidal state and comparison with extrapituitary tissues.
Endocrinology, 137 (1996), pp. 3228-3233
[61.]
M. Luo, R. Faure, J.H. Dussault.
Ontogenesis of nuclear T3 receptors in primary cultured astrocytes and neurons.
Brain Res, 381 (1986), pp. 275-280
[62.]
B. Yusta, F. Besnard, J. Ortiz-Caro, A. Pascual, A. Aranda, L. Sarlieve.
Evidence for the presence of nuclear 3,5,3'-triiodothyronine receptors in secondary cultures of pure rat oligodendrocytes.
Endocrinology, 122 (1988), pp. 2278-2284
[63.]
D.J. Carlson, K.A. Strait, H.L. Schwartz, J.H. Oppenheimer.
Immunofluorescent localization of thyroid hormone receptor isoforms in glial cells of rat brain.
Endocrinology, 135 (1994), pp. 1831-1836
[64.]
J. Mallol, M.J. Obregón, G. Morreale de Escobar.
Analytical artifacts in radioimmunoassay of L-thyroxine in human milk.
Clin Chem, 28 (1982), pp. 1277-1282
[65.]
R.J. Woods, A.K. Sinha, R.P. Ekins.
Uptake and metabolism of thyroid hormones by the rat foetus early in pregnancy.
Clin Sci, 67 (1984), pp. 359-363
[66.]
M.J. Obregón, J. Mallol, R. Pastor, G. Morreale de Escobar, G. Escobar del Rey.
L-thyroxine and 3,3',5-triiodo-L-thyronine in rat embryos before onset of fetal thyroid function.
Endocrinology, 114 (1984), pp. 305-307
[67.]
G. Morreale de Escobar, R. Pastor, M.J. Obregón, F. Escobar del Rey.
Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues.
Endocrinology, 117 (1985), pp. 1890-1901
[68.]
G. Morreale de Escobar, M.J. Obregón, F. Escobar del Rey.
Fetal and maternal thyroid hormones.
Horm Res, 26 (1987), pp. 12-27
[69.]
S.P. Porterfield, C.E. Hendrich.
Tissue iodothyronine levels in fetuses of control and hypothyroid rats at 13 and 16 days gestation.
Endocrinology, 131 (1992), pp. 195-200
[70.]
G. Morreale de Escobar, R. Calvo, M.J. Obregón, F. Escobar del Rey.
Contribution of maternal thyroxine to fetal thyroxine pools in normal rats near term.
Endocrinology, 126 (1990), pp. 2765-2767
[71.]
N.B. Myant.
Passage of thyroxine and tri-iodothyronine from mother to fetus in pregnant women.
Clin Sci, 17 (1958), pp. 75-79
[72.]
M.M. Grümbach, S.C. Werner.
Transfer of thyroid hormone across the human placenta at term.
J Clin Endocrinol Metab, 16 (1956), pp. 1392-1395
[73.]
T. Vulsma, M.H. Gons, J. De Vijlder.
Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid dysgenesis.
N Engl J Med, 321 (1989), pp. 13-16
[74.]
B. Contempré, E. Jauniaux, R. Calvo, D. Jurkovic, S. Campbell, G. Morreale de Escobar.
Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy.
J Clin Endocrinol Metabol, 77 (1993), pp. 1719-1722
[75.]
J. Laterra, G.W. Goldstein.
Ventricular organization of cerebrospinal fluid: blood-brain barrier, brain edema and hydrocephalus.
Principles of neural science, pp. 1288-1301
[76.]
J-P Chanoine, S. Alex, S.L. Fang, S. Stone, J.L. Leonard, J. Köhrle, et al.
Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain.
Endocrinology, 130 (1992), pp. 933-938
[77.]
J.W. Kendall, J.J. Jacobs, R.M. Kramer.
Studies on the transport of hormones from the cerebrospinal fluid to hypothalamus and pituitary. Brain-endocrine interaction. Median eminence: structure and function.
Múnich: Karger, Basel, 1971 (1972), pp. 342-349
[78.]
M.B. Dratman, F.L. Crutchfield, M.B. Schoenhoff.
Transport of iodothyronines from bloodstream to brain: contributions by blood: brain and choroid plexus: cerebrospinal fluid barriers.
Brain Res, 554 (1991), pp. 229-236
[79.]
P.W. Dickson, A.R. Aldred, JGT Menting, P.D. Marley, W.H. Sawyer, G. Schreiber.
Thyroxine transport in choroid plexus.
J Biol Chem, 262 (1987), pp. 13907-13915
[80.]
G. Schreiber, B.R. Southwell, S.J. Richardson.
Hormone delivery systems to the brain-transthyretin.
Exper Clin Endocrinol Diab, 103 (1995), pp. 75-80
[81.]
J.A. Palha, V. Episkopou, S. Maeda, K. Shimada, M.E. Gottesman.
Thyroid hormone metabolism in a transthyretin-null mouse strain.
J Biol Chem, 269 (1994), pp. 33135-33139
[82.]
J.A. Palha, M.T. Hays, G. Morreale de Escobar, V. Episkopou, M.E. Gottesman, M.J. Saraiva.
Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice.
Am J Physiol, 272 (1997), pp. E485-E493
[83.]
D.L. St Germain, V.A. Galton.
The deiodinase family of selenoproteins.
Thyroid, 7 (1997), pp. 655-668
[84.]
P.R. Larsen, T.F. Davis, I.D. Hay.
The thyroid gland.
Williams textbook of endocrinology, pp. 389-515
[85.]
M.J. Berry, L. Banu, P.R. Larsen.
Type I iodothyronine deiodinase is a selenocysteine-containing enzyme.
Nature, 349 (1991), pp. 438-440
[86.]
D. Salvatore, S.C. Low, M. Berry, A.L. Maia, J.W. Herney, W. Croteau, et al.
Type 3 iodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme.
J Clin Invest, 96 (1995), pp. 2421-2430
[87.]
P.R. Larsen, J.R. Silva, M.M. Kaplan.
Relationships between circulating and intracellular thyroid hormones. Physiological and clinical implications.
Endocr Rev, 2 (1981), pp. 87-102
[88.]
J. Van Doorn, F. Roelfsema, D. Van der Heide.
Contribution from local conversion of thyroxine to 3,5,3'-triiodothyronine to intracellular 3,5,3'-triiodothyronine in several organs in hypothyroid rats at isotope equilibrium.
Acta Endocrinol (Copenh), 101 (1982), pp. 386-396
[89.]
F.R. Crantz, J.E. Silva, P.R. Larsen.
An analysis of the sources and quantity of 3,5,3'-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum.
Endocrinology, 110 (1982), pp. 367-375
[90.]
J.L. Leonard, M.M. Kaplan, T.J. Visser, J.E. Silva, P.R. Larsen.
Cerebral cortex responds rapidly to thyroid hormones.
Science, 214 (1981), pp. 571-573
[91.]
M.J. Obregón, C. Ruiz de Oña, R. Calvo, F. Escobar del Rey, G. Morreale de Escobar.
Outer ring iodothyronine deiodinases and thyroid hormone economy: responses to iodine deficiency in the rat fetus and neonate.
Endocrinology, 129 (1991), pp. 2663-2673
[92.]
C. Ruiz de Oña, M.J. Obregón, F. Escobar del Rey, G. Morreale de Escobar.
Developmental changes in rat brain 5'-deiodinase and thyroid hormones during the fetal period: the effects of fetal hypothyroidism and maternal thyroid hormones.
Pediatr Res, 24 (1988), pp. 588-594
[93.]
J.M. Bates, D.L. St. Germain, V.A. Galton.
Expression profiles of the three iodothyronine deiodinases D1, D2 and D3, in the developing rat.
Endocrinology, 140 (1999), pp. 844-851
[94.]
A. Guadaño-Ferraz, M.J. Obregón, D. St-Germain, J. Bernal.
The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain.
Proc Natl Acad Sci USA, 94 (1997), pp. 10391-10396
[95.]
H.M. Tu, S.W. Kim, D. Salvatore, T. Bartha, G. Legradi, P.R. Larsen, et al.
Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone.
Endocrinology, 138 (1997), pp. 3359-3368
[96.]
P.N. Riskind, J.M. Kolodny, P.R. Larsen.
The regional distribution of type II 5'-monodeiodinase in euthyroid and hypothyroid rats.
Brain Res, 420 (1987), pp. 194-198
[97.]
A. Guadaño-Ferraz, M.J. Escámez, E. Rausell, J. Bernal.
Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems.
J Neurosci, 19 (1999), pp. 3430-3439
[98.]
A. Campos-Barros, L.L. Amma, J.S. Faris, R. Shailam, M.W. Kelley, D. Forrest.
Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing.
Proc Natl Acad Sci USA, 97 (2000), pp. 1287-1292
[99.]
J.L. Leonard, A.P. Farwell, P.M. Yen, W.W. Chin, M. Stula.
Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells.
Endocrinology, 135 (1994), pp. 548-555
[100.]
M. Tsacopoulos, P.J. Magistretti.
Metabolic coupling between glia and neurons.
J Neurosci, 16 (1996), pp. 877-885
[101.]
D.J. Bradley, H.C. Towle, WSI. Young.
Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo.
Proc Natl Acad Sci USA, 91 (1994), pp. 439-443
[102.]
J. Lauterman, W-JF. Ten Cate.
Postnatal expression of the rat alphathyroid hormone receptor in the rat cochlea.
Hearing Res, 107 (1997), pp. 23-28
[103.]
M.M. Kaplan, K.A. Yaskoski.
Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus.
J Clin Invest, 67 (1981), pp. 1208-1214
[104.]
J.P. Schröder-van der Elst, D. Van der Heide, G. Morreale de Escobar, M.J. Obregón.
Iodothyronine deiodinase activities in fetal rat tissues at several levels of iodine deficiency: a role for the skin in 3,5,3'-triiodothyronine economy?.
Endocrinology, 139 (1998), pp. 2229-2234
[105.]
M.M. Kaplan, E.A. Shaw.
Type II iodothyronine 5'-deiodination by human and rat placenta in vitro.
J Clin Endocrinol Metabol, 59 (1984), pp. 253-257
[106.]
H.M. Tu, G. Legradi, T. Bartha, D. Salvatore, R.M. Lechan, P.R. Larsen.
Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone.
Endocrinology, 140 (1999), pp. 784-790
[107.]
M.J. Escámez, A. Guadaño-Ferraz, A. Cuadrado, J. Bernal.
Type 3 iodothyronine deiodinase is selectively expressed in areas related to sexual differentiation in the newborn rat brain.
Endocrinology, 140 (1999), pp. 5443-5446
[108.]
K.B. Becker, K.C. Stephens, J.C. Davey, M.J. Schneider, V.A. Galton.
The type 2 and type 3 iodothyronine deiodinases play important roles in coordinating development in Rana catesbeiana tadpoles.
Endocrinology, 138 (1997), pp. 2989-2997
[109.]
D.L. Berry, C.S. Rose, B.F. Remo, D.D. Brown.
The expression pattern of thyroid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption gene expression programs.
Dev Biol, 203 (1998), pp. 24-35
[110.]
N. Marsh-Armstrong, H. Huang, B.F. Remo, T.T. Liu, D.D. Brown.
Asymmetric growth and development of the xenopus laevis retina during metamorphosis is controlled by type III deiodinase.
Neuron, 24 (1999), pp. 871-878
[111.]
H. Huang, N. Marsh-Armstrong, D.D. Brown.
Metamorphosis is inhibited in transgenic xenopus laevis tadpoles that overexpress type III deiodinase.
Proc Natl Acad Sci USA, 96 (1998), pp. 962-967
[112.]
R.H. Mortimer, J.P. Galligan, G.R. Cannell, R.S. Addison, M.S. Roberts.
Maternal to fetal thyroxine transmission in the human term placenta is limited by inner ring deiodination.
J Clin Endocrinol Metabol, 81 (1996), pp. 2247-2249
[113.]
F. Santini, L. Chiovato, P. Ghirri, P. Lapi, C. Mammoli, L. Montanelli, et al.
Serum iodothyronines in the human fetus and the newborn: evidence for an important role of placenta in fetal thyroid hormone homeostasis.
J Clin Endocrinol Metabol, 84 (1999), pp. 493-498
[114.]
V.A. Galton, E. Martínez, A. Hernández, E.A. St. Germain, J.M. Bates, D.L. st. Germain.
Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase.
J Clin Invest, 103 (1999), pp. 979-987
[115.]
M.J. Baum.
Psychosexual development.
Fundamental neuroscience, pp. 1229-1244
[116.]
N.R. Bhat, G. Shanker, A. Pieringer.
Investigations on myelination in vitro. Regulation of 2'-3'-cyclic nucleotide 3'-phosphohydrolase by thyroid hormone in cultures of dissociated brain cells fron embryonic mice.
J Neurochem, 37 (1981), pp. 695-701
[117.]
A. Rodríguez-Peña, N. Ibarrola, M.A. Iñiguez, A. Muñoz, J. Bernal.
Neonatal hypothyroidism, affects the timely expression of myelin-associated glycoprotein in the rat brain.
J Clin Invest, 91 (1993), pp. 812-818
[118.]
N. Ibarrola, A. Rodríguez-Peña.
Hypothyroidism coordinately and transiently affects myelin proein gene expression in most rat brain regions during postnatal development.
Brain Res, 752 (1997), pp. 285-293
[119.]
K.A. Strait, L. Zou, J.H. Oppenheimer.
b1 isoform-specific regulation of a triiodothyronine-induced gene during cerebellar development.
Mol Endocrinol, 6 (1992), pp. 1874-1880
[120.]
A. Guadaño-Ferraz, F. Escobar del Rey, G. Morreale de Escobar, G.M. Innocenti, P. Berbel.
The development of the anterior commissure in normal and hypothyroid rats.
Dev Brain Res, 81 (1994), pp. 293-308
[121.]
A. Farsetti, B. Desvergne, P. Hallenbeck, J. Robbins, V. Nikodem.
Characterization of myelin basic protein thyroid hormone response element and its function in the context of native and heterologous promoter.
J Biol Chem, 267 (1992), pp. 15784-15788
[122.]
G. Almazan, P. Honegger, J.M. Matthieu.
Triiodothyronine stimulation of oligodendroglial differentiation and myelination.
Dev Neurosci, 7 (1985), pp. 45-54
[123.]
B.A. Barres, M.A. Lazar, M.C. Raff.
A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development.
Development, 120 (1994), pp. 1097-1108
[124.]
T. Ben-Hur, B. Rogister, K. Murray, G. Rougon, M. Dubois-Dalcq.
Growth and fate of PSA-NCAM + precursors of the postnatal brain.
J Neurosci, 18 (1998), pp. 5777-5778
[125.]
K.K. Johe, T.G. Hazel, T. Muller, M.M. Dugich-Djordjevic, R.D. McKay.
Single factors direct the differentiation of stem cells from the fetal and adult central nervous system.
Genes Dev, 10 (1996), pp. 3129-3140
[126.]
B. Rogister, T. Ben-Hur, M. Dubois-Dalcq.
From neural stem cells to mMyelinating oligodendrocytes.
Mol Cell Neurosci, 14 (1999), pp. 287-300
[127.]
A. Dembri, M. Belkhiria, O. Michel, R. Michel.
Effects of short-and long-term thyroidectomy on mitochondrial and nuclear activity in adult rat brain.
Mol Cell Endocrinol, 33 (1983), pp. 211-223
[128.]
C.S. Bangur, J.L. Howland, S.S. Katyare.
Thyroid hormone treatment alters phospholipid composition and membrane fluidity of rat brain mitochondria.
Biochem J, 305 (1995), pp. 29-32
[129.]
E. Vega-Núñez, A.M. Álvarez, A. Menéndez-Hurtado, A. Santos, A. Pérez-Castillo.
Neuronal mitochondrial morphology and transmembrane potential are severely altered by hypothyroidism during rat brain development.
Endocrinology, 138 (1997), pp. 3771-3778
[130.]
E. Vega-Núñez, A. Menéndez-Hurtado, R. Garesse, A. Santos, A. Perez-Castillo.
Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning.
J Clin Invest, 96 (1995), pp. 893-899
[131.]
M. Álvarez-Dolado, M. González-Moreno, A. Valencia, M. Zenke, J. Bernal, A. Muñoz.
Identification of a mammalian homologue of the fungal Tom70 mitochondrial precursor protein import receptor as a thyroid hormone-regulated gene in specific brain regions.
J Neurochem, 73 (1999), pp. 2240-2249
[132.]
T. Iglesias, J. Caubín, A. Zaballos, J. Bernal, A. Muñoz.
Identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) as a thyroid hormone regulated gene by whole genome PCR analysis.
Biochem Biophys Res Comm, 210 (1995), pp. 995-1000
[133.]
P. Casaccia-Bonnefil, H. Kong, M.V. Chao.
Neurotrophins: the biological paradox of survival factors eliciting apoptosis.
Cell Death Differ, 5 (1998), pp. 357-364
[134.]
M. Bibel, E. Hoppe, Y.A. Barde.
Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR.
EMBO J, 18 (1999), pp. 616-622
[135.]
A.J. Patel, M. Hayashi, A. Hunt.
Role of thyroid hormone and nerve growth factor in the development of choline acetyltransferase and other cell-specific marker enzymes in the basal forebrain of the rat.
J Neurochem, 50 (1988), pp. 803-811
[136.]
J. Clos, C. Legrand.
An interaction between thyroid hormone and nerve growth factor promotes the development of hippocampus, olfactory bulbs and cerebellum: a comparative biochemical study of normal and hypothyroid rats.
Growth Factor, 3 (1990), pp. 205-220
[137.]
P. Walker, M.L. Weil, M.E. Weichsel, D.A. Fisher.
Effects of thyroxine on nerve growth factor concentration in neonatal mouse brain.
Life Sci, 28 (1981), pp. 1777-1787
[138.]
T. Giordano, J.B. Pan, D. Casuto, S. Watanabe, S.P. Arneric.
Thyroid hormone regulation of NGF. NT-3 and BDNF RNA in the adult rat brain.
Mol Brain Res, 16 (1992), pp. 239-245
[139.]
B.C. Figuereido, G. Almazán, Y. Ma, W. Tetzlaff, F.D. Miller, A.C. Cuello.
Gene expression in the developing cerebellum during perinatal hypoand hyperthyroidism.
Mol Brain Res, 17 (1993), pp. 258-268
[140.]
M. Álvarez-Dolado, T. Iglesias, A. Rodríguez-Peña, J. Bernal, A. Muñoz.
Expression of neurotrophins and the trk family of neurotrophin receptors in normal and hypothyroid rat brain.
Mol Brain Res, 27 (1994), pp. 249-257
[141.]
L. Calzá, L. Giardino, S. Ceccatelli, T. Hokfelt.
Neurotrophins and their receptors in the adult hypo-and hyperthyroid rat after kainic acid injection: an in situ hybridization study.
Eur J Neurosci, 8 (1996), pp. 1873-1881
[142.]
D. Lindholm, E. Castren, P. Tsoulfas, R. Kolbeck, M. Penha Berzaghi, A. Leingartner, et al.
Neurotrophin-3 induced by tri-iodothyronine in cerebellar granullar cells promotes purkinje cell differentiation.
J Cell Biol, 122 (1993), pp. 443-450
[143.]
I. Neveu, E. Arenas.
Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats.
J Cell Biol, 133 (1996), pp. 631-646
[144.]
J. Altman, S.A. Bayer.
Development of the cerebellar system.
[145.]
N. Koibuchi, H. Fukuda, W.W. Chin.
Promoter-specific regulation of the brain-derived neurotrophic factor gene by thyroid hormone in the developing rat cerebellum.
Endocrinology, 140 (1999), pp. 3955-3961
[146.]
P.M. Schwartz, P.R. Borghesani, R.L. Levy, S.L. Pomeroy, R.A. Segal.
Abnormal cerebellar development and foliation in BDNF -/-mice reveals a role of neurotrophins in CNS patterning.
Neuron, 19 (1997), pp. 269-281
[147.]
J. Francon, A. Fellous, A.M. Lennon, J. Núñez.
Is thyroxine a regulatory signal for neurotubule assembly during brain development?.
Nature, 266 (1977), pp. 188-191
[148.]
J. Nunez, D. Couchie, F. Aniello, A.M. Bridoux.
Regulation by thyroid hormone of microtubule assembly and neuronal differentiation.
Neurochem Res, 16 (1991), pp. 975-982
[149.]
A. Muñoz, A. Rodríguez-Peña, A. Pérez-Castillo, B. Ferreiro, J.G. Sutcliffe, J. Bernal.
Effects of neonatal hypothyroidism on rat brain gene expression.
Mol Endocrinol, 5 (1991), pp. 273-280
[150.]
F. Aniello, D. Couchie, A.M. Bridoux, D. Gripois, J. Núñez.
Splicing of juvenile and adult tau mRNA variants is regulated by thyroid hormone.
Proc Natl Acad Sci U S A, 88 (1991), pp. 4035-4039
[151.]
C. Mavilia, D. Couchie, J. Núñez.
Diversity of high-molecular-weight tau proteins in different regions of the nervous system.
J Neurochem, 63 (1994), pp. 2300-2306
[152.]
J.E. Silva, P. Rudas.
Effects of congenital hypothyroidism on microtubule-associated protein-2 expression in the cerebellum of the rat.
Endocrinology, 126 (1990), pp. 1276-1282
[153.]
F. Aniello, D. Couchie, D. Gripois, J. Núñez.
Regulation of five tubulin isotypes by thyroid hormone during brain development.
J Neurochem, 57 (1991), pp. 1781-1786
[154.]
S.A. Lewis, M.G. Lee, N.J. Cowan.
Five mouse tubulin isotypes and their regulated expression during development.
J Cell Biol, 101 (1985), pp. 852-861
[155.]
A. Villasante, D. Wang, P. Dobner, P. Dolph, S.A. Lewis, N.J. Cowan.
Six mouse alpha-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes.
Mol Cell Biol, 6 (1986), pp. 2409-2419
[156.]
D. Wang, A. Villasante, S.A. Lewis, N.J. Cowan.
The mammalian betatubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype.
J Cell Biol, 103 (1986), pp. 1903-1910
[157.]
D.W. Cleveland.
The multitubulin hypothesis revisited: what have we learned?.
J Cell Biol, 104 (1987), pp. 381-383
[158.]
F.D. Miller, C.C. Naus, M. Durand, F.E. Bloom, R.J. Milner.
Isotypes of alpha-tubulin are differentially regulated during neuronal maturation.
J Cell Biol, 105 (1987), pp. 3065-3073
[159.]
C. Gravel, R. Hawkes.
Thyroid hormone modulates the expression of a neurofilament antigen in the cerebellar cortex: premature induction and overexpression by basket cells in hyperthyroidism and a critical period for the correction of hypothyroidism.
Brain Res, 422 (1987), pp. 327-335
[160.]
U. Pal, S.C. Biswas, P.K. Sarkar.
Regulation of actin and its mRNA by thyroid hormones in cultures of fetal human brain during second trimester of gestation.
J Neurochem, 69 (1997), pp. 1170-1176
[161.]
S.C. Biswas, U. Pal, P.K. Sarkar.
Regulation of cytoskeletal proteins by thyroid hormone during neuronal maturation and differentiation.
Brain Res, 757 (1997), pp. 245-253
[162.]
J.L. Leonard, A.P. Farwell.
Thyroid hormone-regulated actin polymerization in brain.
Thyroid, 7 (1997), pp. 147-151
[163.]
J. Milbrandt.
A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor.
Science, 238 (1987), pp. 797-799
[164.]
B. Mellström, C. Pipaon, J.R. Naranjo, A. Pérez-Castillo, A. Santos.
Differential effect of thyroid hormone on NGFI-A gene expression in developing rat brain.
Endocrinology, 135 (1994), pp. 583-588
[165.]
M.T. Ghorbel, I. Seugnet, N. Hadj-Sahraoui, P. Topilko, G. Levi, B. Demeneix.
Thyroid hormone effects on Krox-24 transcription in the postnatal mouse brain are developmentally regulated but are not correlated with mitosis.
Oncogene, 18 (1999), pp. 917-924
[166.]
H. Imataka, K. Sogawa, K. Yasumoto, Y. Kikuchi, K. Sasano, A. Kobayashi, et al.
Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene.
EMBO J, 11 (1992), pp. 3663-3671
[167.]
R.J. Denver, L. Ouellet, D. Furling, A. Kobayashi, Y. Fujii-Kuriyama, J. Puymirat.
Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth.
J Biol Chem, 274 (1999), pp. 23128-23134
[168.]
C. Carlberg, R. Hooft van Huijsduijnen, J.K. Staple, J.F. DeLamarter, M. Becker-Andre.
RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers.
Mol Endocrinol, 8 (1994), pp. 757-770
[169.]
V. Giguere, L.D. McBroom, G. Flock.
Determinants of target gene specificity for ROR alpha 1: monomeric ADN binding by an orphan nuclear receptor.
Mol Cell Biol, 15 (1995), pp. 2517-2526
[170.]
S. Sashihara, P.A. Felts, S.G. Waxman, T. Matsui.
Orphan nuclear receptor ROR alpha gene: isoform-specific spatiotemporal expression during postnatal development of brain.
Mol Brain Res, 42 (1996), pp. 109-117
[171.]
B.A. Hamilton, W.N. Frankel, A.W. Kerrebrock, T.L. Hawkins, W. FitzHugh, K. Kusumi, et al.
Disruption of the nuclear hormone receptor RORalpha in staggerer mice [published erratum appears in Nature 1996:381: 346].
Nature, 379 (1996), pp. 736-739
[172.]
N. Koibuchi, W.W. Chin.
RORa gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation.
Endocrinology, 139 (1998), pp. 2335-2341
[173.]
M. Álvarez-Dolado, J.M. González-Sancho, J. Bernal, A. Muñoz.
Developmental expression of tenascin-C is altered by hypothyroidism in the rat brain.
Neurosci, 84 (1998), pp. 309-322
[174.]
M.J. Latasa, A. Belandia, A. Pascual.
Thyroid hormones regulates b-amyloid gene splicing and protein secretion in neuroblastoma cells.
Endocrinology, 139 (1998), pp. 2692-2697
[175.]
D. Gerrelli, J.D. Huntriss, D.S. Latchman.
Antagonistic effects of retinoic acid and thyroid hormone on the expression of the tissue splicing protein SmN in a clonal cell line derived from rat heart.
J Mol Cell Cardiol, 26 (1994), pp. 713-719
[176.]
A. Cuadrado, J. Bernal, A. Muñoz.
Identification of the mammalian homolog of the splicing regulator suppressor-of-white-apricot as a thyroid hormone regulated gene.
Mol Brain Res, 71 (1999), pp. 332-340
[177.]
T. Iglesias, J. Caubin, H.G. Stunnenberg, A. Zaballos, J. Bernal, A. Muñoz.
Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation.
EMBO J, 15 (1996), pp. 4307-4316
[178.]
M. Álvarez-Dolado, A. Cuadrado, C. Navarro-Yubero, P. Sonderegger, A.J. Furley, J. Bernal, et al.
Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain.
Mol Cell Neurobiol, 16 (2000), pp. 499-514
[179.]
J.B. Watson, E.F. Battenberg, K.K. Wong, F.E. Bloom, J.G. Sutcliffe.
Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein.
J Neurosci Res, 26 (1990), pp. 397-408
[180.]
J. Baudier, J.C. Deloulme, A. Van Dorsselaer, D. Black, H.W. Matthes.
Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain.
J Biol Chem, 266 (1991), pp. 229-237
[181.]
D.D. Gerendasy, J.G. Sutcliffe.
RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes.
Mol Neurobiol, 15 (1997), pp. 131-163
[182.]
M.A. Iñiguez, L. De Lecea, A. Guadaño-Ferraz, B. Morte, D. Gerendasy, J.G. Sutcliffe, et al.
Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain.
Endocrinology, 137 (1996), pp. 1032-1041
[183.]
C. Martínez de Arrieta, L. Pérez Jurado, J. Bernal, A. Coloma.
Structure, organization, and chromosomal mapping of the human neurogranin gene (NRGN).
Genomics, 41 (1997), pp. 243-249
[184.]
M.A. Iñiguez, A. Rodriguez-Pena, N. Ibarrola, G. Morreale de Escobar, J. Bernal.
Adult rat brain is sensitive to thyroid hormone. Regulation of RC3/neurogranin mRNA.
J Clin Invest, 90 (1992), pp. 554-558
[185.]
T.R. Soderling.
The Ca-calmodulin-dependent protein kinase cascade.
Trends Biochem Sci, 24 (1999), pp. 232-236
[186.]
C.A. Ohmstede, K.F. Jensen, N.E. Sahyoun.
Ca2 + /calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase.
J Biol Chem, 264 (1989), pp. 5866-5875
[187.]
J. Krebs, R.L. Means, P. Honegger.
Induction of calmodulin kinase IV by the thyroid hormone during the development of rat brain.
J Biol Chem, 271 (1996), pp. 11055-11058
[188.]
M. Kuno-Murata, N. Koibuchi, H. Fukuda, M. Murata, W.W. Chin.
Augmentation of thyroid hormone receptor-mediated transcription by Ca2 + /calmodulin-dependent protein kinase type IV.
Endocrinology, 141 (2000), pp. 2275-2278
[189.]
J.D. Falk, P. Vargiu, P.E. Foye, H. Usui, J. Pérez, P.E. Danielson, et al.
Rhes: a striatal-specific Ras homolog related to Dexras1.
J Neurosci Res, 57 (1999), pp. 782-788
[190.]
R.J. Kemppainen, E.N. Behrend.
Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells.
J Biol Chem, 273 (1998), pp. 3129-3131
[191.]
Y. Urade, O. Hayaishi.
Prostaglandin D synthase: structure and function.
Vit Horm, 58 (2000), pp. 89-120
[192.]
D.M. White, T. Takeda, L.J. DeGroot, K. Stefansson, B.G. Arnason.
Betatrace gene expression is regulated by a core promoter and a distal thyroid hormone response element.
J Biol Chem, 272 (1997), pp. 14387-14393
[193.]
L.F. García-Fernández, Y. Urade, O. Hayaishi, J. Bernal, A. Muñoz.
Identification of a thyroid hormone response element in the promoter region of the rat lipocalin-type prostaglandin D synthase (beta-trace) gene.
Mol Brain Res, 55 (1998), pp. 321-330
[194.]
D.T. Nordquist, C.A. Kozak, H.T. Orr.
cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje cells.
J Neurosci, 8 (1988), pp. 223-226
[195.]
L. Zou, S.C. Hagen, K.A. Strait, J.H. Oppenheimer.
Identification of thyroid hormone response elements in rodent Pcp-2, a developmentally regulated gene of cerebellar Purkinje cells.
J Biol Chem, 269 (1994), pp. 13346-13352
[196.]
G.W. Anderson, S.G. Hagen, R.J. Larson, K.A. Strait, H.L. Schwartz, C.N. Mariash, et al.
Purkinje cell protein-2 cis-elements mediate repression of T3-dependent transcriptional activation.
Mol Cell Endocrinol, 131 (1997), pp. 79-87
[197.]
G.W. Anderson, R.J. Larson, D.R. Oas, C.R. Sandhofer, H.L. Schwartz, C.N. Mariash, et al.
Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain.
J Biol Chem, 273 (1998), pp. 16391-16399
[198.]
C.C. Thompson.
Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog.
J Neurosci, 16 (1996), pp. 7832-7840
[199.]
C. Faivre-Sarrailh, C. Ferraz, J.P. Liautard, A. Rabie.
Effect of thyroid deficiency on actin mRNA content in the developing rat cerebellum.
Int J Dev Neurosci, 8 (1990), pp. 99-106
[200.]
N. Koibuchi, S. Matsuzaki, K. Ichimura, H. Ohtake, S. Yamaoka.
Ontogenic changes in the expression of cytochrome c oxidase subunit I gene in the cerebellar cortex of the perinatal hypothyroid rat.
Endocrinology, 137 (1996), pp. 5096-5108
[201.]
A.P. Farwell, S.A. Dubord-Tomasetti.
Thyroid hormone regulates the expression of laminin in the developing rat cerebellum.
Endocrinology, 140 (1999), pp. 4221-4227
[202.]
D. Forrest, B. Vennström.
Functions of thyroid hormone receptors in mice.
Thyroid, 10 (2000), pp. 41-52
[203.]
C. Sandhofer, H.L. Schwartz, C.N. Mariash, D. Forrest, J.H. Oppenheimer.
Beta receptor isoforms are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice.
Mol Cell Endocrinol, 137 (1998), pp. 109-115
[204.]
D. Forrest, E. Hanebuth, R.J. Smeyne, N. Everds, C.L. Stewart, J.M. Wehner, et al.
Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.
EMBO J, 15 (1996), pp. 3006-3015
[205.]
D. Forrest, G. Golarai, J. Connor, T. Curran.
Genetic analysis of thyroid hormone receptors in development and disease.
Rec Prog Horm Res, 51 (1996), pp. 1-22
[206.]
A. Fraichard, O. Chassande, M. Plateroti, J.P. Roux, J. Trouillas, C. Dehay, et al.
The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production.
EMBO J, 16 (1997), pp. 4412-4420
[207.]
S. Gothe, Z. Wang, L. Ng, J.M. Kindblom, A.C. Barros, C. Ohlsson, et al.
Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation.
Genes Dev, 13 (1999), pp. 1329-1341
[208.]
T.L. Dellovade, Y.S. Zhu, L. Krey, D.W. Pfaff.
Thyroid hormone and estrogen interact to regulate behavior.
Proc Natl Acad Sci USA, 93 (1996), pp. 12581-12586
[209.]
G.F. Maberly.
Iodine deficiency disorders: contemporary scientific issues.
J Nutr, 124 (1994), pp. 1473S-1478S
[210.]
F. Merke.
The history and iconography of endemic goiter and cretinism.
[211.]
R. McCarrison.
Endemic cretinism. The thyroid gland in health and disease.
pp. 124-147
[212.]
G.R. DeLong, J.B. Stanbury, R. Fierro-Benítez.
Neurological signs in congenital iodine-deficiency disorder (endemic cretinism).
Dev Med Child Neurol, 27 (1985), pp. 317-324
[213.]
C.H. Thilly, P.P. Bourdoux, D.T. Due, G.R. DeLong, J.B. Vanderpas, A.M. Ermans.
Myxedematous cretinism: an indicator of the most severe goiter endemias.
Frontiers in thyroidology, pp. 1081-1084
[214.]
B. Contempre, J.E. Dumont, J.F. Denef, M.C. Many.
Effects of selenium deficiency on thyroid necrosis, fibrosis and proliferation: a possible role in myxoedematous cretinism.
Eur J Endocrinol, 133 (1995), pp. 99-109
[215.]
B. Contempre, O. Le Moine, J.E. Dumont, J.F. Denef, M.C. Many.
Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta).
Mol Cell Endocrinol, 124 (1996), pp. 7-15
[216.]
P.O. Pharoah, K.J. Connolly.
Effects of maternal iodine supplementation during pregnancy.
Arch Dis Child, 66 (1991), pp. 145-147
[217.]
F. Delange.
Neonatal screening for congenital hypothyroidism: results and perspectives.
Hormone Res, 48 (1997), pp. 51-61
[218.]
F. Delange.
Neonatal screening for congenital hypothyroidism: results and perspectives.
Horm Res, 48 (1997), pp. 51-61
[219.]
G. Tell, L. Pellizzari, G. Esposito, C. Pucillo, P.E. Macchia, R Di Lauro, et al.
Structural defects of a Pax8 mutant that give rise to congenital hypothyroidism.
Biochem J, 341 (1999), pp. 89-93
[220.]
P.E. Macchia, P. Lapi, H. Krude, M.T. Pirro, C. Missero, L. Chiovato, et al.
PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis.
Nat Genet, 19 (1998), pp. 83-86
[221.]
D. Tiosano, S. Pannain, G. Vassart, J. Parma, R. Gershoni-Baruch, H. Mandel, et al.
The hypothyroidism in an inbred kindred with congenital thyroid hormone and glucocorticoid deficiency is due to a mutation producing a truncated thyrotropin receptor.
Thyroid, 9 (1999), pp. 887-894
[222.]
S. LaFranchi.
Congenital hypothyroidism: etiologies, diagnosis, and management.
Thyroid, 9 (1999), pp. 735-740
[223.]
J-M Dubois, J. Glorieux, F. Richer, C.L. Deal, J.H. Dussault, G. Van Vliet.
Outcome of severe congenital hypothyrodism: closing the developmental gap with early high dose levothyroxine treatment.
J Clin Endocrinol Metabol, 81 (1996), pp. 222-227
[224.]
F. De Zegher, F. Pernasetti, C. Vanhole, H. Devlieger, G. Van den Berghe, J.A. Martial.
The prenatal role of thyroid hormone evidenced by fetomaternal Pit-1 deficiency.
J Clin Endocrinol Metab, 80 (1995), pp. 3127-3130
[225.]
R.M. Blizzard, R.W. Chandler, M.D. Landing Pettit, C.D. West.
Maternal autoimmunization to thyroid as probable cause of athyreotic cretinism.
N Engl J Med, 263 (1960), pp. 327-336
[226.]
T. Yasuda, H. Ohnishi, K. Wataki, M. Minagawa, K. Minamitami, H. Niimi.
Outcome of a baby born from a mother with acquired juvenile hypothyroidism having undetectable thyroid hormone concentrations.
J Clin Endocrinol Metabol, 84 (1999), pp. 2630-2632
[227.]
R.D. Utiger.
Maternal hypothyroidism ad fetal development.
N Engl J Med, 341 (1999), pp. 601-602
[228.]
D. Glinoer.
The regulation of thyroid function in pregnancy: pathways of endocrine adaptation from physiology to pathology.
Endocr Rev, 18 (1997), pp. 401-433
[229.]
J.E. Haddow, G.E. Palomaki, W.C. Allan, J.R. Williams, G.J. Knight, J. Gagnon, et al.
Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child.
N Engl J Med, 341 (1999), pp. 549-555
[230.]
V.J. Pop, J.L. Kuijpens, A.L. Van Baar, G. Verkerk, M.M. Van Son, JJ De Vijlder, et al.
Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy.
Clin Endocrinol, 50 (1999), pp. 149-155
[231.]
D.A. Fisher.
Thyroid function in premature infants. The hypothyroxinemia of prematurity.
Clin Perinatol, 25 (1998), pp. 999-1014
[232.]
M.F. Van den Hove, C. Beckers, H. Devlieger, F. De Zegher, P. De Nayer.
Hormone synthesis and storage in the thyroid of human preterm and term newborns: effect of thyroxine treatments.
Biochimie, 81 (1999), pp. 563-570
[233.]
D.A. Fisher.
Hypothyroxinemia in premature infants: is thyroxine treatment necessary?.
Thyroid, 9 (1999), pp. 715-720
[234.]
S. Ares, H. Escobar-Morreale, J. Quero, S. Durán, M.J. Presas, R. Herruzo, et al.
Neonatal hypothyroxinemia: effects of iodine intake and premature birth.
J Clin Endocrinol Metabol, 82 (1997), pp. 1704-1712
[235.]
G. Morreale de Escobar, S. Ares.
The hypothyroxinemia of prematurity.
J Clin Endocrinol Metabol, 83 (1998), pp. 713-715
[236.]
J.G. Thorpe-Beeston, K.H. Nicolaides, C.V. Felton, J. Butler, A.M. McGregor.
Maturation of the secretion of thyroid hormone and thyroid stimulating hormone in the fetus.
N Eng J Med, 324 (1991), pp. 532-536
[237.]
A.L. Den Ouden, J.H. Kok, P.H. Verkerk, R. Brand, S.P. Verloove-Vanhorick.
The relation between neonatal thyroxine levels ad neurodevelopmental outcome at age 5 and 9 years in a national cohort of very preterm and/or very low birth weight infants.
Pediatr Res, 39 (1996), pp. 142-145
[238.]
M.L. Reuss, N. Paneth, J.A. Pinto-Martin, J.M. Lorenz, M. Susser.
The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age.
N Engl J Med, 334 (1996), pp. 821-827
[239.]
A. Levinton, N. Paneth, M.L. Reuss, M. Susser, E.N. Allred, O. Dammann, et al.
Hypothyroxinemia of prematurity and the risk of cerebral white matter damage.
J Pediatr, 134 (1999), pp. 706-711
[240.]
A.G. Van Wassenaer, J.H. Kok, J.J. De Vijlder, J.M. Briet, B.J. Smit, P. Tamminga, et al.
Effects of thyroxine supplementation on neurologic development in infants born at less than 30 weeks' gestation.
N Engl J Med, 336 (1997), pp. 21-26
[241.]
A.G. Van Wassenaer, J.H. Kok, F.W. Dekker, E. Endert, J.J. De Vijlder.
Thyroxine administration to infants of less than 30 weeks gestational age decreases plasma tri-iodothyronine concentrations.
Eur J Endocrinol, 139 (1998), pp. 508-515
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos