covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Metabolismo en el ayuno
Información de la revista
Vol. 51. Núm. 4.
Páginas 139-148 (abril 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 51. Núm. 4.
Páginas 139-148 (abril 2004)
Acceso a texto completo
Metabolismo en el ayuno
Fasting metabolism
Visitas
363560
R. Albero*, A. Sanz, J. Playán
Servicio de Endocrinología y Nutrición. Hospital Universitario Miguel Servet. Zaragoza. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

El ayuno es la situación metabólica existente por la mañana después de una noche sin comer. Ante la falta de ingreso de nutrientes, el organismo pone en marcha unos mecanismos conducentes a la producción de sustratos energéticos que aseguren el metabolismo cerebral y otros órganos vitales, y disminuye simultáneamente el consumo periférico, con el objetivo teleológico de la supervivencia. Si el ayuno se prolonga en el tiempo, los procesos metabólicos van cambiando en sus características cualitativas y cuantitativas, de manera que se modifican los productos energéticos consumidos (glucosa, ácidos grasos libres y cuerpos cetónicos), disminuye globalmente su oxidación y tras la depleción inicial de glucógeno hepático y muscular y el catabolismo proteínico, la fuente principal de glucosa es el hígado mediante la gluconeogénesis. Los sustratos provienen inicialmente del catabolismo proteínico y la lipólisis, pero más adelante la destrucción proteínica se ralentiza, maximizándose la lipólisis. En los últimos años se han producido avances en el conocimiento de los mecanismos implicados. Así, se conoce mejor el umbral de glucemia necesario para comenzar la cascada de eventos. Pero, sobre todo, el descubrimiento de la leptina, la implicación del neuropéptido Y, los amplios y diversos cambios hormonales, así como sus repercusiones sobre variados aspectos del metabolismo, están ayudando a comprender los mecanismos íntimos del ayuno.

Palabras clave:
Glucosa
Ácidos grasos libres
Cuerpos cetónicos
Insulina
Leptina
Neuropéptido Y
Sistema nervioso simpático
Glucogenólisis
Gluconeogénesis
Proteólisis
Lipólisis

Fasting is the metabolic state that occurs in the morning after a night without food intake. Due to the lack of nutrients, the body activates mechanisms to produce energy substrates that ensure metabolism of the brain and other vital organs. At the same time, with the teleological aim of survival, peripheral consumption is reduced. When fasting is prolonged, the metabolic process changes qualitatively and quantitatively: the energy products consumed are modified (glucose, non-esterified fatty acids, ketone bodies), their oxidation is globally diminished and, after the initial depletion of hepatic and muscular glycogen and protein catabolism, plasma glucose is maintained by gluconeogenesis, a process that depends mainly on the catabolism of muscle and adipose tissue. Subsequently, muscle catabolism slows down, maximizing lipolysis. Recently, our knowledge of the mechanisms involved in fasting, such as the glycemic threshold required to begin the metabolic cascade, has increased. However, in particular, new fields of knowledge that are leading to greater insight into the intrinsic mechanisms of fasting are the discovery of leptin, the involvement of neuropeptide Y, the wide and varied hormonal changes that occur and their effects on several aspects of metabolism.

Key words:
Glucose
Non-esterified fatty acids
Ketone bodies
Insulin
Leptin
Neuropeptide Y
Sympathetic nervous system
Glycogenolysis
Glyconeogenesis
Proteolysis
Lipolysis
El Texto completo está disponible en PDF
Bibliografía
[1.]
R.A. DeFronzo, E. Ferranini.
Regulation of intermediary metabolism during fasting and feeding.
Endocrinolgy,
[2.]
J.V. Neel.
Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progess”?.
Am J Hum Genet, 14 (1962), pp. 353-362
[3.]
F.G. Benedict.
A study of prolonged fasting.
[4.]
A. Keys, J. Brozek, A. Henschel, O. Mickelson, H.L. Taylor.
The biology of human starvation.
[5.]
K.S. Nair, P.D. Woolf, S.L. Welle, D.E. Matthews.
Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects.
Am J Clin Nutr, 46 (1987), pp. 557-562
[6.]
C. Zauner, B. Schneeweiss, C. Kranz A Madl, K. Ratheiser, L. Kramer, et al.
Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine.
Am J Clin Nutr, 71 (2000), pp. 1511-1555
[7.]
J.N. Patel, S.W. Coppack, D.S. Goldstein, J.M. Miles, G. Eisenhofer.
Norepinephrine spillover from human adipose tissue before and after a 72-hour fast.
J Clin Endocrinol Metab, 87 (2002), pp. 3373-3377
[8.]
P.R. Kerndt, J.L. Naughton, C.E. Deiscoll, D.A. Loxterkamp.
Fasting: the history, pathophysiology and complications.
West J Med, 137 (1982), pp. 379-399
[9.]
C. Gómez Candela, M. De Santiago, R. Albero.
Ayuno prolongado en obesos: análisis de una experiencia clínica.
N Arch Fac Med (Madrid), 41 (1983), pp. 65-70
[10.]
D. Frommel, M. Gautier, E. Questiaux, L. Schwarzenberg.
Voluntary total fasting: a challenge for the medical community.
Lancet, 1 (1984), pp. 1451-1452
[11.]
W.J. Kalk, M. Felix, E.R. Snoey, Y. Veriawa.
Voluntary total fasting in political prisoners: clinical and biochemical observations.
S Afr Med J, 83 (1993), pp. 391-394
[12.]
G.J. Annas.
Hunger strikes.
BMJ, 311 (1995), pp. 114-115
[13.]
J. Faintuch, F.G. Soriano, J.P. Ladeira, M. Janiszewski, I.T. Velasco, J.J. Gama-Rodrigues.
Changes in body fluid and energy compartments during prolonged hunger strikes.
Rev Hosp Clin Fac Med Sao Paulo, 55 (2000), pp. 47-54
[14.]
S.M. Hutson, A.E. Harper.
Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease.
Am J Clin Nutr, 34 (1981), pp. 173-183
[15.]
J.C. Erickson, G. Hollopeter, R.D. Palmiter.
Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y.
Science, 274 (1996), pp. 1704-1707
[16.]
I.A. Barash, C.C. Cheung, D.S. Weigle, H. Ren, E.B. Kabigtimg, J.L. Kujper.
Leptin is a metabolic signal to the reproductive system.
Endocrinology, 137 (1996), pp. 3144-3147
[17.]
M.F. Dallman, S.F. Akana, S. Bhatnagar, M.E. Bell, S.J. Choi, A. Chu, et al.
Starvation: Early signals, sensors, and sequelae.
Endocrinology, 140 (1999), pp. 4015-4023
[18.]
J.r. Cahill GF.
Starvation in man.
N Engl J Med, 282 (1970), pp. 668-675
[19.]
G.B. Bolli, C.G. Fanelli.
Physiology of glucose conunterregulation to hypoglycemia.
Endocrinol Metab Clin North Am, 28 (1999), pp. 467-493
[20.]
O. Owen, G. Reichard.
Human forearm metabolism during progressive starvation.
J Clin Invest, 50 (1971), pp. 1536-1545
[21.]
E.B. Marliss, Aoki, R. Unger, J.S. Soeldner, G.F. Cahill Jr..
Glucagon levels and metabolic effects in fasting man.
J Clin Invest, 49 (1970), pp. 2256-2270
[22.]
J.A. Romijn, M.H. Godfried, M.J.T. Hommes, E. Endert, H.P. Sauerwein.
Decresed glucose oxidation during short-term starvation.
Metabolism, 39 (1990), pp. 525-530
[23.]
S.J. Vannucci, F. Maher, I.A. Simpson.
Glucose transporter proteins in brain: Delivery of glucose to neurons and glia.
Glia, 21 (1997), pp. 2-21
[24.]
N. Schwartz, W. Clutter, S. Shah.
Glycemic thresholds for activation of glucose counterregulatory systems are higher than the thresholds for symptoms.
J Clin Invest, 79 (1987), pp. 777-781
[25.]
A. Mitrakou, C. Ryan, T. Veneman.
Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction.
Am J Physiol, 260 (1991), pp. E67
[26.]
C. Fanelli, S. Pampanelli, L. Epifano.
Relative roles of insulin and hypoglucaemia on induction of neuroendocrine responses to symptoms of and deterioration of cognitive function in hypoglucaemia in male and female humans.
Diabetologia, 37 (1994), pp. 797-807
[27.]
C.D. Saudeck, D.R. Boulter, R.A. Arky.
The natriuretic effect of glucagon and its role in starvation.
J Clin Endocrinol Metab, 36 (1973), pp. 761-784
[28.]
M. Bergendahl, M.L. Vance, A. Iranmanesh, M.O. Thorner, J.D. Veldhuis.
Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in health men.
J Clin Endocrinol Metab, 81 (1996), pp. 692-699
[29.]
M.W. Schwartz, R.J. Seeley.
Neuroendocrine responses to starvation and weight loss.
N Engl J Med, 336 (1997), pp. 1802-1811
[30.]
D.L. Coleman.
Effects of parabiosis of obese with diabetes and normal mice.
Diabetologia, 9 (1973), pp. 294-298
[31.]
Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman.
Positional cloning of the mouse obese gene and its human homologue.
Nature, 372 (1994), pp. 425-432
[32.]
L.A. Campfield, F.J. Smith, Y. Guisez, R. Devos, P. Burn.
Recombinat mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks.
Science, 269 (1995), pp. 546-549
[33.]
M. Rosembaum, M. Nicolson, J. Hirsch, S.B. Heymsfield, D. Gallagher, F. Chu, et al.
Effects of gender, body composition, and menopause on plasma concentrations of leptin.
J Clin Endocrinol Metab, 81 (1996), pp. 3424-3427
[34.]
R.V. Considine, M.K. Sinha, M.L. Heiman, A. Kriauciunas, W.T. Stephens, M.R. Nyce, et al.
Serum immunoreactive-leptin concentrations in normal-weight and obese humans.
N Engl J Med, 334 (1996), pp. 292-295
[35.]
G. Boden, X. Chen, M. Mozzoli, I. Ryan.
Effect of fasting on serum leptin in normal human subjects.
J Clin Endocrinol Metab, 81 (1996), pp. 3419-3423
[36.]
M. Bergendhal, A. Iranmanesh, W.S. Evans, J.D. Veldhuis.
Shortterm fasting selectively suppress leptin pulse mass and 24-hour rhythmic leptin release in healthy midluteal phase women without disturbing leptinpulse frequency or its entropy control (pattern orderliness).
J Clin Endocrinol Metab, 85 (2000), pp. 207-213
[37.]
W.M. Pardrige.
Receptor-mediated peptide transport through the blood-brain barrier.
Endocr Rev, 7 (1986), pp. 314-330
[38.]
G.D. Baura, D.M. Foster, D. Porte Jr., S.E. Kahn, R.N. Bergman, C. Cobelli, et al.
Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: a mechanism for regulated insulin delivery to the brain.
J Clin Invest, 92 (1993), pp. 1824-1830
[39.]
M.W. Schwartz, D.P. Figlewicz, D.G. Baskin, S.C. Woods, D. Porte Jr..
Insulin in the brain: a hormonal regulator of energy balance.
Endocr Rev, 13 (1992), pp. 387-414
[40.]
M.W. Schwartz, R.J. Seeley, L.A. Campfield, P. Burn, D.G. Baskin.
Identification of targets of leptin action in rat hypothalamus.
J Clin Invest, 98 (1996), pp. 1101-1106
[41.]
S.C. Woods, D. Porte Jr., E. Bobbioni, E. Ionescu, J.F. Santer, F. Rohner-Jeanrenaud, et al.
Insulin: its relationship to the central nervous system and to the control of food intake and body weight.
Am J Clin Nutr, 42 (1985), pp. 1063-1071
[42.]
J.T. Clark, P.S. Kalra, W.R. Crowlwy, S.P. Kalra.
Neuropeptide Y and human pancreatic polypeptide stimulate feeding behaviour in rats.
Endocrinology, 115 (1984), pp. 427-429
[43.]
B.G. Stanley, S.E. Kyrkouli, S. Lampert, S.F. Leibowitz.
Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity.
Peptides, 7 (1986), pp. 1189-1192
[44.]
G. Bray.
Peptides affect the intake of specific nutrients and the sympathetic nervous system.
Am J Clin Nutr, 55 (1992), pp. S265-S271
[45.]
C.J. Billington, J.E. Briggs, M. Grace, A.S. Levine.
Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism.
Am J Physiol, 260 (1991), pp. R321-R327
[46.]
P. Ponsalle, L.S. Srivastava, R.M. Uht, J.D. White.
Glucocorticoids are required for food deprivation-induced increases in hypothalamic neuropeptide Y expression.
J Neuroendocrinol, 4 (1993), pp. 585-591
[47.]
A.M. Strack, R.J. Sebastian, M.W. Schwartz, M.F. Dallman.
Glucocorticoids and insulin: reciprocal signals for energy balance.
Am J Physiol, 268 (1995), pp. R142-R149
[48.]
M.F. Dallman, A.M. Strack, S.F. Akana, M.J. Bradbury, E.J. Hanson, K.A. Scribner, et al.
Feast and famine: critical role of glucocorticoids with insulin in daily energy flow.
Front Neuroendocrinol, 14 (1993), pp. 303-347
[49.]
L.S. Brady, M.A. Smith, P.W. Gold, M. Herkenham.
Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats.
Neuroendocrinology, 52 (1990), pp. 441-447
[50.]
S. Suemaru, K. Hashimoto, T. Hattori, H. Inoue, J. Kageyama, Z. Ota.
Starvation-induced changes in rat brain corticotropinreleasing factor (CRF) and pituitary-adrenocortical response.
Life Sci, 39 (1986), pp. 1161-1166
[51.]
M.F. Dallman.
Stress update: adaptation of the hypothalamicpituitary-adrenal axis to chronic stress.
Trends Endocrinol Metab, 4 (1993), pp. 62-69
[52.]
B.G. Stanley.
Neuropeptide Y in multiple hypothalamic sites controls eating behavior, endocrine, and autonomic systems for body energy balance.
The biology of neuropeptide Y and related peptides, pp. 457-509
[53.]
N. Zarjevski, I. Cusin, R. Vettor, F. Rohner-Jeanrenaud, B. Jeanreanud.
Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity.
Endocrinology, 133 (1993), pp. 1753-1758
[54.]
J.P. Liu, I.J. Clarke, J.W. Funder, D. Engler.
Studies of the secretion of corticotropin-releasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. II. The central noradrenergic and neuropeptide T pathways cause immediate and prolonged hypothalamic-pituitary-adrenal activation: potential involvement in the pseudo-Cushing's syndrome of endogenous depression and anorexia nervosa.
J Clin Invest, 93 (1994), pp. 1439-1450
[55.]
J. Vaughan, C. Donaldson, J. Bittencourt.
Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor.
Nature, 378 (1995), pp. 287-292
[56.]
M.S. Harbuz, R.G. Rees, D. Eckland, D.S. Jessop, D. Brewerton, S.L. Lightman.
Paradoxical responses of hypothlamic corticotropin-releasing factor (CRF) messenger ribonucleic acid (mRNA) and CRF-41 peptide and adenohypophysial proopiomelanocortin mRNA during chronic inflammatory stress.
[57.]
D.D. Krahn, B.A. Gosnell, A.S. Levine, J.E. Morley.
Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects.
Brain Res, 443 (1988), pp. 63-69
[58.]
N.J. Rothwell.
Central effects of CRF on metabolism and energy balance.
Neurosci Biobehav Rev, 14 (1990), pp. 263-271
[59.]
G.A. Bray, J. Fisler, D.A. York.
Neuroendocrine control of the development of obesity: understanding gained from studies of experiemental animal models.
Front Neuroendocrinol, 11 (1990), pp. 128-181
[60.]
G.F. Cahill, M.G. Herrera, A.P. Morgan, J.S. Soeldner, J. Steinke, P.L. Levy, et al.
Hormone-fuel interrelationship during fasting.
J Clin Invest, 45 (1966), pp. 1751-1768
[61.]
A. Niijma.
Nervous regulation of metabolism.
Prog Neurobiol, 3 (1989), pp. 135-147
[62.]
M.D. Jensen, M.W. Haymond, J.E. Gerich, P.E. Cryer, J.M. Miles.
Lipolysis during fasting: decreased suppression by fasting and increased stimulation by epinephrine.
J Clin Invest, 79 (1987), pp. 207-213
[63.]
R. Wolfe, J.E. Peters, S. Klein, O.B. Holland, J.I. Rosenblatt, H. Gary.
Effect of short-term fasting on lipolytic responsiveness in normal and obese human subjects.
Am J Physiol, 252 (1987), pp. E189-E196
[64.]
P.I. Mansell, I.W. Fellows, I.A. Macdonald.
Enhanced thermogenic response to epinephrine after 48-h starvation in humans.
Am J Physiol, 258 (1990), pp. R87-R93
[65.]
L. Stryer.
Biochemistry.
[66.]
M.H. Samuels, P. Kramer.
Differential effects of short-term fasting on pulsatile thyrotropin, gonadotropin, and alpha-subunit secretion in healthy men –a clinical research center study.
J Clin Endocrinol Metab, 81 (1996), pp. 32-36
[67.]
M. Bergendahl, J.A. Aloi, A. Iranmanesh, T.M. Mulligan, J.D. Veldhuis.
Fasting suppresses pulsatile luteinizing hormone (LH) secretion and enhances orderliness of LH release in young but not older men.
J Clin Endocrinol Metab, 83 (1998), pp. 1967-1975
[68.]
R. Alvero, L. Kimzey, N. Sebring, J. Reynolds, M. Loughran, L. Nieman, et al.
Effects of fasting on neuroendocrine function and follicle development in lean women.
J Clin Endocrinol Metab, 83 (1998), pp. 76-80
[69.]
W.L. Isley, L.E. Underwood, D.R. Clemmons.
Dietary components that regulate serum somatomedin-C concentrations in humans.
J Clin Invest, 71 (1983), pp. 175-182
[70.]
T.J. Merimee, J. Zapf, E.R. Froesc.
Insulin-like growth factors in the fed and fasted states.
J Clin Endocrinol Metab, 55 (1982), pp. 999-1002
[71.]
J.P. Thissen, L.E. Underwood, J.M. Ketelslegers.
Regulation of insulin-like growth factor-I in starvation and injury.
Nutr Rev, 57 (1999), pp. 167-176
[72.]
C. Gómez-Candela, M. De Santiago, R. Albero.
Efecto del ayuno prolongado sobre el eje hipofiso-tiroideo en pacientes obesos.
N Arch Fac Med (Madrid), 41 (1983), pp. 401-405
[73.]
D.S. Strauss, C.D. Takemoto.
Effect of fasting on insulin-like growth factor-I (IGF-I) and growth hormone receptor mRNA levels and IGF-I gene transcription in rat liver.
Mol Endocrinol, 4 (1990), pp. 91-100
[74.]
V. Beauloye, B. Willems, V. De Coninck, S.J. Frank, M. Edery, J.P. Thissen.
Impairment of liver GH receptor signalling by fasting.
Endocrinology, 143 (2002), pp. 792-800
[75.]
L. Wartofski, K.D. Burman.
Alterations in thyroid function in patients with systemic illness: the “euthyroid sick syndrome”.
Endocr Rev, 3 (1982), pp. 164-217
[76.]
I.J. Chopra.
Euthyroid sick syndrome: is it a misnomer?.
J Clin Endocrinol Metab, 82 (1997), pp. 329-334
[77.]
R.H. Unger.
The milieu interieur and the islets of Langerhans.
Diabetologia, 20 (1981), pp. 1-11
[78.]
J.E. Gerich, P.J. Campbell.
Overview of counterregulation and its abnormalities in diabetes mellitus and other conditions.
Diab Metab Rev, 4 (1988), pp. 93-112
[79.]
D.L. Rothman, I. Magnusson, L.D. Katz.
Quantitation of hepatic glycogenolisis and gluconeogenesis in fasting humans with 13C NMR.
Science, 254 (1991), pp. 573-576
[80.]
A.M. Soto Moreno, P.P. García Luna.
Respuesta endocrino-metabólica en el ayuno prolongado.
Nutrición clínica. Bases y fundamentos, pp. 67-81
[81.]
R.A. DeFronzo, R.C. Bonadonna, E. Ferranini.
Patogenesis in NIDDM: a balanced overview.
Diabetes Care, 15 (1992), pp. 318-368
[82.]
J.E. Gerich, C. Meyer, H.J. Woerle, M. Stumvoll.
Renal gluconeogenesis.
Diabetes Care, 24 (2001), pp. 382-391
[83.]
K. Ekberg, B.R. Landau, A. Wajnot, V. Chandramouli, S. Effendic, H. Brunengraber, et al.
Contributions by kidney and liver to glucose production in the postabsortive state and after 60 h of fasting.
Diabetes, 48 (1999), pp. 292-298
[84.]
A.C. Guyton.
Protein metabolism.
Text book of medical physiolgy 8th ed, pp. 754
[85.]
T.J. Merimée, R. Misbin, A. Pulkkinen.
Sex variations in free fatty acids and ketones during fasting: Evidence for a role of glucagons.
J Clin Endocrinol Metab, 46 (1978), pp. 414-419
[86.]
R.L. Leibel, M. Rosenbaum, J. Hirsch.
Changes in energy expenditure resulting from altered body weight.
N Engl J Med, 332 (1995), pp. 621-628
[87.]
A.G. Dullo, S. Samec.
Uncoupling proteins: do they have a role in body weight regulation?.
New Physiol Scien, 15 (2000), pp. 313-318
[88.]
O.E. Owen, A.P. Morgan, A.P. Kemp.
Brain metabolism during fasting.
J Clin Invest, 46 (1967), pp. 1589-1595
[89.]
J. Wahren, S. Efendic, R. Luft.
Influence of somatostatin on splanchnic glucose metabolism in postabsortive and 60-h fasted humans.
J Clin Invest, 59 (1977), pp. 299-307
[90.]
R.J. Havel.
Caloric homeostasis and disorders of fuel transport.
N Engl J Med, 287 (1972), pp. 1186-1192
[91.]
A. Rapoport, G.L.A. From, H. Husdan.
Metabolic studies in prolonged fasting. II. Organic metabolism.
Metabolism, 14 (1965), pp. 47-58
[92.]
N.B. Ruderman, K. Tornheim, M.N. Goodman.
Fuel homeostais and intermediary metabolism of carbohydrate, fat, and protein.
Principles and practice of endocrinology and metabolism, pp. 1054-1064
[93.]
P. Pujol-Amat.
Necesidades nutritivas especiales del deportista. En: Nutrición, salud y rendimiento deportivo.
pp. 75-111
[94.]
G.R. Keeton.
Hunger strikes: ethical and management problems.
S Afr Med J, 83 (1993), pp. 380-381
[95.]
I. Scobie.
Weight loss will be much faster in lean than in obese hunger strikers.
BMJ, 316 (1998), pp. 707
[96.]
G.A. Bray.
Treatment of the obese patient: Use of diet and exercise. En: The obese patient.
Major problems in internal medicine, pp. 300-352
[97.]
M. Elia, R.J. Stubbs, C.J. Henry.
Differences in fat carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation.
Obes Res, 7 (1999), pp. 597-604
[98.]
E.J. Drenick, M.E. Swendseid, W. Blahd, S.G. Tuttle.
Prolonged starvation as treatment for severe obesity.
JAMA, 187 (1964), pp. 100-105
[99.]
J. Leboulanger.
Las vitaminas.
pp. 1-190
[100.]
J.S. Fisler.
Cardiac effects of starvation and semistarvation diets: safety and mechanisms of actino.
Am J Clin Nutr, 56 (1992), pp. 230-234
[101.]
N. Egberg, C. Kockum, J. Palmblad.
Fasting (acute energy deprivation) in man: effect on blood coagulation and fibrinolysis.
Am J Clin Nutr, 30 (1977), pp. 1963-1967
Copyright © 2004. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos