Información de la revista
Diabetes mellitus hoy
Acceso a texto completo
Novel genetic findings applied to the clinic in type 2 diabetes
Visitas
2185
Jose C. Florez
Autor para correspondencia
jcflorez@partners.org
Correspondence: Simches Research Center. CPZN 5250 Massachusetts General Hospital 185. Cambridge Street. Boston, MA 02114. USA.
Correspondence: Simches Research Center. CPZN 5250 Massachusetts General Hospital 185. Cambridge Street. Boston, MA 02114. USA.
Center for Human Genetic Research and Diabetes Center (Diabetes Unit). Massachusetts General Hospital. Program in Medical and Population Genetics. Broad Institute. Department of Medicine. Harvard Medical School. USA
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
References
[1.]
J.C. Florez.
Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: Where are the insulin resistance genes?.
Diabetologia, 51 (2008), pp. 1100-1110
[2.]
J. Gudmundsson, P. Sulem, V. Steinthorsdottir, J.T. Bergthorsson, G. Thorleifsson, A. Manolescu, et al.
Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes.
Nat Genet, 39 (2007), pp. 977-983
[3.]
T.M. Frayling, H. Colhoun, J.C. Florez.
A genetic link between type 2 diabetes and prostate cancer.
Diabetologia, 51 (2008), pp. 1757-1760
[4.]
I. Prokopenko, C. Langenberg, J.C. Florez, R. Saxena, N. Soranzo, G. Thorleifsson, et al.
Variants in MTNR1B influence fasting glucose levels.
Nat Genet, 41 (2009), pp. 77-81
[5.]
V. Lyssenko, C.L. Nagorny, M.R. Erdos, N. Wierup, A. Jonsson, P. Spegel, et al.
Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion.
Nat Genet, 41 (2009), pp. 82-88
[6.]
N. Bouatia-Naji, A. Bonnefond, C. Cavalcanti-Proenca, T. Sparso, J. Holmkvist, M. Marchand, et al.
A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk.
Nat Genet, 41 (2009), pp. 89-94
[7.]
C.I.M. Panhuysen, L.A. Cupples, P.W.F. Wilson, A.G. Herbert, R.H. Myers, J.B. Meigs.
A genome scan for loci linked to quantitative insulin traits in persons without diabetes: the Framingham Offspring Study.
Diabetologia, 46 (2003), pp. 579-587
[8.]
R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, et al.
A genome-wide association study identifies novel risk loci for type 2 diabetes.
Nature, 445 (2007), pp. 828-830
[9.]
Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University and Novartis Institutes for BioMedical Research: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331- 6.
[10.]
I. Pe’er, P.I.W. De Bakker, J. Maller, R. Yelensky, D. Altshuler, M.J. Daly.
Evaluating and improving power in whole-genome association studies using fixed marker sets.
Nat Genet, 38 (2006), pp. 663-667
[11.]
E. Zeggini, L.J. Scott, R. Saxena, B.F. Voight, J.L. Marchini, T. Hu, et al.
Meta-analysis of genome-wide association data and largescale replication identifies additional susceptibility loci for type 2 diabetes.
Nat Genet, 40 (2008), pp. 638-645
[12.]
S. Kathiresan, O. Melander, C. Guiducci, A. Surti, N.P. Burtt, M.J. Rieder, et al.
Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.
Nat Genet, 40 (2008), pp. 189-197
[13.]
P.W. Wilson, J.B. Meigs, L. Sullivan, C.S. Fox, D.M. Nathan, R.B. D’Agostino.
Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study.
Arch Intern Med, 167 (2007), pp. 1068-1074
[14.]
J.B. Meigs, P. Shrader, L.M. Sullivan, J.B. McAteer, C.S. Fox, J. Dupuis, et al.
Genotype score in addition to common risk factors for prediction of type 2 diabetes.
N Engl J Med, 359 (2008), pp. 2208-2219
[15.]
V. Lyssenko, A. Jonsson, P. Almgren, N. Pulizzi, B. Isomaa, T. Tuomi, et al.
Clinical risk factors, DNA variants, and the development of type 2 diabetes.
N Engl J Med, 359 (2008), pp. 2220-2232
[16.]
E.R. Pearson, W.G. Liddell, M. Shepherd, R.J. Corrall, A.T. Hattersley.
Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1a gene mutations: evidence for pharmacogenetics in diabetes.
Diabet Med, 17 (2000), pp. 543-545
[17.]
E.R. Pearson, I. Flechtner, P.R. Njolstad, M.T. Malecki, S.E. Flanagan, B. Larkin, For the Neonatal Diabetes International Collaborative Group, et al.
Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations.
N Engl J Med, 355 (2006), pp. 467-477
[18.]
E.R. Pearson, L.A. Donnelly, C. Kimber, A. Whitley, A.S.F. Doney, M.I. McCarthy, et al.
Variation in TCF7L2 influences therapeutic response to sulfonylureas: A GoDARTs study.
Diabetes, 56 (2007), pp. 2178-2182
[19.]
J.C. Florez, K.A. Jablonski, N. Bayley, T.I. Pollin, P.I.W. De Bakker, A.R. Shuldiner, For the Diabetes Prevention Program Research Group, et al.
TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program.
N Engl J Med, 355 (2006), pp. 241-250
[20.]
A.F. Moore, K.A. Jablonski, C.C. Mason, J.B. McAteer, R.F. Arakaki, B.J. Goldstein, et al.
The association of ENPP1 K121Q with diabetes incidence is abolished by lifestyle modification in the Diabetes Prevention Program.
J Clin Endocrinol Metab, 94 (2009), pp. 449-455
[21.]
M. Bluher, G. Lubben, R. Paschke.
Analysis of the relationship between the Pro12Ala variant in the PPAR-γ2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes.
Diabetes Care, 26 (2003), pp. 825-831
[22.]
S. Snitker, R.M. Watanabe, I. Ani, A.H. Xiang, A. Marroquin, C. Ochoa, et al.
Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Pro12Ala peroxisome proliferator-activated receptor- γ2 gene variant: results from the Troglitazone in Prevention of Diabetes (TRIPOD) study.
Diabetes Care, 27 (2004), pp. 1365-1368
[23.]
J.C. Florez, K.A. Jablonski, M.W. Sun, N. Bayley, S.E. Kahn, H. Shamoon, For the Diabetes Prevention Program Research Group, et al.
effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone.
J Clin Endocrinol Metab, 92 (2007), pp. 1502-1509
[24.]
Y. Feng, G. Mao, X. Ren, H. Xing, G. Tang, Q. Li, et al.
Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients.
Diabetes Care, 31 (2008), pp. 1939-1944
[25.]
Y. Shu, S.A. Sheardown, C. Brown, R.P. Owen, S. Zhang, R.A. Castro, et al.
Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action.
J Clin Invest, 117 (2007), pp. 1422-1431
[26.]
D.J. Hunter, M.J. Khoury, J.M. Drazen.
Letting the genome out of the bottle--will we get our wish?.
N Engl J Med, 358 (2008), pp. 105-107
[27.]
A.F. Moore, J.C. Florez.
Genetic susceptibility to type 2 diabetes and implications for antidiabetic therapy.
Annu Rev Med, 59 (2008), pp. 95-111
[28.]
T.M. Frayling.
Genome-wide association studies provide new insights into type 2 diabetes aetiology.
Nat Rev Genet, 8 (2007), pp. 657-662
[29.]
O. Ludovico, F. Pellegrini, R. Di Paola, A. Minenna, S. Mastroianno, M. Cardellini, et al.
Heterogeneous effect of peroxisome proliferator- activated receptor γ2 Ala12 variant on type 2 diabetes risk.
Obesity, 15 (2007), pp. 1076-1081
[30.]
J.C. Florez.
The new type 2 diabetes gene TCF7L2.
Curr Opin Clin Nutr Metab Care, 10 (2007), pp. 391-396
[31.]
J.C. Florez, N. Burtt, P.I.W. De Bakker, P. Almgren, T. Tuomi, J. Holmkvist, et al.
Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.
Diabetes, 53 (2004), pp. 1360-1368
[32.]
K. Yasuda, K. Miyake, Y. Horikawa, K. Hara, H. Osawa, H. Furuta, et al.
Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus.
Nat Genet, 40 (2008), pp. 1092-1097
Copyright © 2009. Sociedad Española de Endocrinología y Nutrición