covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Papel de la tomografía por emisión de positrones en el cáncer diferenciado de...
Información de la revista
Vol. 52. Núm. 5.
Curso de endocrinología para posgraduados
Páginas 243-250 (mayo 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 52. Núm. 5.
Curso de endocrinología para posgraduados
Páginas 243-250 (mayo 2005)
Curso de endocrinología para posgraduados
Acceso a texto completo
Papel de la tomografía por emisión de positrones en el cáncer diferenciado de tiroides
Role of positron emission tomography in differentiated thyroid cancer
Visitas
6611
J.R. Domínguez-Escribano
, F.J. Pomares, L. López-Penabad
Sección de Endocrinología y Nutrición. Hospital Universitario de San Juan. Alicante. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Se describen los fundamentos y metodología de la tomografía por emisión de positrones (PET), con especial hincapié en el isótopo 2-[18F] fluoro-2-desoxi-D-glucosa (FDG) y su aplicación en el seguimiento del cáncer diferenciado de tiroides. De acuerdo con los datos recogidos en la bibliografía médica, la principal utilidad de la FDG-PET es detectar las recidivas tumorales posquirúrgicas del cáncer diferenciado de tiroides que cursan con rastreos gammagráficos con 131I negativos y concentraciones elevadas de tiroglobulina sérica. Se comenta la possible mejoría del rendimiento de la FDG-PET mediante el estímulo previo con tirotropina humana recombinante y/o su combinación con la tomografía computarizada. Asimismo, se revisa la posible utilidad de la FDG-PET en el estudio de los nódulos tiroideos, y el incidentaloma tiroideo por PET.

Palabras clave:
Tomografía por emisión de positrones (PET)
Cáncer diferenciado de tiroides
2-[18F] desoxi-D-glucosa (FDG)

Functional and methodological features of positron emission tomography (PET) are described, with special emphasis on the fluorine-18- fluorodesoxyglucose (18FDG) isotope and its applications in the follow-up of differentiated thyroid cancer (DTC). According to the medical literature, the main role of 18FDG-PET is to detect DTC recurrences in patients with negative 131I scanning and elevated thyroglobulin levels. The hypothetical advantages of rTSH treatment prior to 18FDG-PET, and of combined computed tomography (CT)/FDG-PET imaging in the detection of recurrences are examined. The possible value of 18FDG-PET in the evaluation of thyroid nodules, and of PET in the evaluation of thyroid incidentaloma, are discussed.

Key words:
Positron emission tomography (PET)
Thyroid differentiated cancer
Fluorodesoxyglucose (FDG)
El Texto completo está disponible en PDF
Bibliografía
[1.]
H. Joensuu, A. Ahonen.
Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose.
J Nucl Med, 28 (1987), pp. 910-914
[2.]
D.A. Mankoff, J.R. Bellon.
Positron-emission tomographic imaging of cancer: glucose metabolism and beyond.
Semin Radiat Oncol, 11 (2001), pp. 16-27
[3.]
C. Gámez, A. Cabrera, R. Sopena, M.J. García.
La tomografía por emisión de positrones (PET) en oncología (parte I).
Rev Esp Med Nuclear, 21 (2002), pp. 41-66
[4.]
Y.E. Erdi, H.A. Macapinlac, S.M. Larson, A.K. Erdi, H. Yeung, E.E. Furhang, et al.
Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging.
Clin Pos Imaging, 2 (1999), pp. 41-46
[5.]
L. Hooft, A.A.M. Van der Veldt, P.J. Van Diest, O.S. Hoekstra, J. Berkhof, G.J. Teule, et al.
[18F]Fluorodeoxyglucose uptake in recurrent thyroid cancer is related to hexokinase I expression in the primary tumor.
J Clin Endocrinol Metab, 90 (2005), pp. 328-334
[6.]
G.JR. Cook, M.N. Maisy, I. Fogelman.
Normal variants, artifacts and interpretative pitfalls in PET with 18-fluoro-2-deoxyglucose and carbon-11 methionine.
Eur J Nucl Med, 26 (1999), pp. 1363-1378
[7.]
P. Lindholm, H. Minn, S. Leskinen-Kallio, J. Bergman, U. Ruotsalainen, H. Joensuu.
Influence of the blood glucose concentration on FDG uptake in cancer: a PET study.
J Nucl Med, 34 (1993), pp. 1-6
[8.]
L. Wartofsky.
Using baseline and recombinant human TSH stimulated Tg measurements to manage thyroid cancer without diagnostic 131I scanning.
J Clin Endocrinol Metab, 87 (2002), pp. 1486-1489
[9.]
M. Schlumberger, O. Arcangioli, J.D. Piekarski, M. Tubiana, C. Parmentier.
Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest xrays.
J Nucl Med, 29 (1988), pp. 1790-1794
[10.]
E.G. Black, A. Cassoni, T.M. Gimlette, C.L. Harmer, M.N. Maisey, G.D. Oates, et al.
Serum thyroglobulin in thyroid cancer.
Lancet, 2 (1981), pp. 443-445
[11.]
S. Grant, B. Luttrell, T. Reeve, J. Wiseman, E. Wilmshurst, J. Stiel, et al.
Thyroglobulin may be undetectable in the serum of patients with metastatic disease secondary to differentiated thyroid carcinoma. Follow-up of differentiated thyroid carcinoma.
Cancer, 54 (1984), pp. 1625-1628
[12.]
R.J. Galloway, R.C. Smallridge.
Imaging in thyroid cancer.
Endocrinol Metab Clin North Am, 25 (1996), pp. 93-113
[13.]
E. Lubin, S. Mechlis-Frish, S. Zatz, A. Shimoni, K. Segal, A. Avraham, et al.
Serum thyroglobulin and iodine-131 whole-body scan in the diagnosis and assessment of treatment for metastatic differentiated thyroid carcinoma.
J Nucl Med, 35 (1994), pp. 257-262
[14.]
N. Khan, N. Oriuchi, T. Higuchi, H. Zhang, K. Endo.
PET in the follow-up of differentiated thyroid cancer.
Br J Radiol, 76 (2003), pp. 690-695
[15.]
U. Feine, R. Leitzenmayer, J.P. Hanke, J. Held, H. Wohrle, W. Muller- Schuenburg.
Fluorine-18-FDG and Iodine-131-iodide uptake in thyroid cancer.
J Nucl Med, 37 (1996), pp. 1468-1472
[16.]
M. Dietlein, K. Scheidhauer, E. Voth, P. Theissen, H. Schicha.
Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer.
Eur J Nucl Med, 24 (1997), pp. 1342-1348
[17.]
W. Wang, H. Macapinlac, S.M. Larson, S.D. Yeh, T. Akhurst, R.D. Finn, et al.
PET scanning with [18F] 2-fluoro-2-D-glucose (FDG) can localize residual differentiated thyroid cancer in patients with negative [131I]-iodine whole-body scans.
J Clin Endocrinol Metab, 84 (1999), pp. 2291-2302
[18.]
P.S. Conti, J.M. Durski, F. Bacqai, S.T. Grafton, P.A. Singer.
Imaging of locally recurrent and metastatic thyroid cancer with positron emission tomography.
Thyroid, 9 (1999), pp. 797-804
[19.]
J.K. Chung, Y. So, J.S. Lee, C.W. Choi, S.M. Lim, D.S. Lee, et al.
Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan.
J Nucl Med, 40 (1999), pp. 986-992
[20.]
F. Grünwald, T. Kalicke, U. Feine, R. Lietzenmayer, K. Scheidhauer, M. Dietlein, et al.
Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study.
Eur J Nucl Med, 26 (1999), pp. 1547-1552
[21.]
M.A. Muros, J.M. Llamas-Elvira, A. Ramírez-Navarro, M.J. Gómez, A. Rodríguez-Fernández, T. Muros, et al.
Utility of fluorine- 18-fluorodeoxyglucose positron emission tomography in differentiated thyroid carcinoma with negative radioiodine scans and elevated serum thyroglobulun levels.
Am J Surg, 179 (2000), pp. 457-461
[22.]
A. Frilling, R. Gorges, K. Tecklenborg, P. Gassmann, M. Bockhorn, M. Clausen, et al.
Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma.
Surgery, 128 (2000), pp. 1067-1074
[23.]
N.S. Alnafisi, A.A. Driedger, G. Coates, D.G. Moote, S.J. Raphael.
FDG PET of recurrent or metastatic I-131 negative papillary thyroid carcinoma.
J Nucl Med, 41 (2000), pp. 1010-1015
[24.]
B.O. Helal, P. Merlet, M.E. Toubert, B. Franc, C. Schvartz, H. Gauthier- Koelesnikov, et al.
Clinical impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy.
J Nucl Med, 42 (2001), pp. 1464-1469
[25.]
A. Frilling, K. Tecklenborg, R. Gorges, F. Weber, M. Clausen, E.C. Broelsch.
Preoperative diagnostic value of [18F] fluorodeoxyglucose positron emission tomography in patients with radioiodine negative recurrent well differentiated thyroid carcinoma.
Ann Surg, 234 (2001), pp. 804-811
[26.]
J.S. Yeo, J.K. Chung, Y. So, S. Kim, E. Lee, D.S. Lee, et al.
F-18-fluorodeoxyglucose positron emission tomography as presurgical evaluation modality for I-131 scan-negative thyroid carcinoma patients with local recurrence in cervical lymph nodes.
Head Neck, 23 (2001), pp. 94-103
[27.]
B. Schluter, K.H. Bohuslavizki, W. Beyer, M. Plotkin, R. Buchert, M. Clausen.
Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative I-131 scan.
J Nucl Med, 42 (2001), pp. 71-76
[28.]
M. Plotkin, H. Hautzel, B.J. Krause, D. Schmidt, R. Larisch, F.M. Mottaghy, et al.
Implication of 2-18fluoro-2-deoxyglucose positron emission tomography in the follow-up of Hurthle cell thyroid cancer.
Thyroid, 12 (2002), pp. 155-161
[29.]
F. Grünwald, C. Menzel, H. Bender, H. Palmedo, P. Willkomm, J. Ruhlmann, et al.
Comparison of FDG18-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer.
Thyroid, 7 (1997), pp. 327-335
[30.]
U. Feine.
Fluor-18-deoxyglucose positron emission tomography in differentiated thyroid cancer.
Eur J Endocrinol, 138 (1998), pp. 492-496
[31.]
F. Grunwald, A. Schomburg, H. Bender, E. Klemm, C. Menzel, T. Bultmann, et al.
Fluorine-18-fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer.
Eur J Nucl Med, 23 (1996), pp. 312-319
[32.]
P. Lind, G. Kresnik E Kumnig, H.J. Gallowitsch, I. Igerc, S. Matschnig, et al.
18F-FDG-PET in the Follow-up of Thyroid Cancer.
Acta Médic Austriaca, 30 (2003), pp. 17-21
[33.]
M. Dietlein, K. Scheidhauer, E. Voth, P. Theissen, H. Schicha.
Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer.
Eur J Nucl Med, 24 (1997), pp. 1342-1348
[34.]
W. Wang, S.M. Larson, M. Fazzari, S.K. Tickoo, K. Kolbert, G. Sgouros, et al.
Prognostic value of [18F] fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer.
J Clin Endocrinol Metab, 85 (2000), pp. 1107-1113
[35.]
R. Boerner, T. Petrich, E. Weckesser, H. Fricke, M. Hofmann, D. Otto, et al.
Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET.
Eur J Nucl Med, 29 (2002), pp. 231-236
[36.]
T. Shiga, E. Tsukamoto, K. Nakada, K. Morita, T. Kato, M. Mabuchi, et al.
Comparison of 18F-FDG, 131I-Na, and 201Tl in diagnosis of recurrent or metastatic thyroid carcinoma.
J Nucl Med, 42 (2001), pp. 414-419
[37.]
M. Iwata, K. Kasagi, T. Misaki, K. Matsumoto, Y. Iida, T. Ishimori, et al.
Comparison of whole-body 18F-FDG PET, 99mTc-MIBI SPECT, and post-therapeutic 131I-Na scintigraphy in the detection of metastatic thyroid cancer.
Eur J Nucl Med Mol Imaging, 31 (2004), pp. 491-498
[38.]
B.R. Haugen, E.C. Lin.
Isotope imaging for metastatic thyroid cancer.
Endocrinol Metab Clin North Am, 30 (2001), pp. 469-492
[39.]
J.T. Deichen, C. Schmidt, O. Prante, S. Maschauer, T. Papadopoulos, T. Kuwert.
Influence of TSH on uptake of [18F]fluorodeoxyglucose in human thyroid cells in vitro.
Eur J Nucl Med Mol Imaging, 31 (2004), pp. 507-512
[40.]
Y. Hosaka, M. Tawata, A. Kurihara, T. Endo, T. Onaya.
The regulation of two distinct glucose transporter (GLUT1 and GLUT 4) gene expressions in cultured rat thyroid cells by thyrotropin.
Endocrinol, 131 (1992), pp. 159-165
[41.]
L. Hooft, O.S. Hoekstra, W. Deville, P. Lips, G.J. Teule, M. Boers, et al.
Diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer.
J Clin Endocrinol Metab, 86 (2001), pp. 3779-3786
[42.]
F. Moog, R. Linke, N. Manthey, R. Tiling, P. Knesewitsch, K. Tatsch, et al.
Influence of thyroidstimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma.
J Nucl Med, 41 (2000), pp. 1989-1995
[43.]
K.M. Van Tol, P.L. Jager, D.A. Piers, J. Pruim, E.G. De Vries, R.P. Dullaart, et al.
Better yield of 18Fluorodeoxyglucose-positron emission tomography in patients with metastatic differentiated thyroid carcinoma during thyrotropin stimulation.
Thyroid, 12 (2002), pp. 381-387
[44.]
T. Petrich, A.R. Borner, D. Otto, M. Hofmann, W.H. Knapp.
Influence of rhTSH on [18]Fluorodeoxyglucose uptake by differentiated thyroid carcinoma.
Eur J Nucl Med, 29 (2002), pp. 641-647
[45.]
B.B. Chin, P. Patel, C. Cohade, M. Ewertz, R. Wahl, P. Ladenson.
Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma.
J Clin Endocrinol Metab, 89 (2004), pp. 91-95
[46.]
L.A. Zimmer, B. Mccook, C. Meltzer, M. Fukui, D. Bascom, C. Snyderman, et al.
Combined positron emission. tomography/ computed tomography imaging of recurrent thyroid cancer.
Otolaryng-Head Neck Surg, 128 (2003), pp. 178-184
[47.]
A.D. Bloom, L.P. Adler, J.M. Shuck.
Determination of malignancy of thyroid nodules with positron emission tomography.
Surgery, 114 (1993), pp. 728-734
[48.]
M.S. Cohen, N. Arslan, F. Dehdashti, G.M. Doherty, T.C. Lairmore, L.M. Brunt, J.F. Moley.
Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography.
Surgery, 130 (2001), pp. 941-946
[49.]
K.W. Kang, S.K. Kim, H.S. Kang, E.S. Lee, J.S. Sim, I.G. Lee, et al.
Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects.
J Clin Endocrinol Metab, 88 (2003), pp. 4100-4104
[50.]
G. Wolf, R.M. Aigner, G. Schaffler, T. Schwarz, P. Krippl.
Pathology results in [18F]fluorodeoxyglucose positron emission tomography of the thyroid gland.
Nucl Med Commun, 24 (2003), pp. 1225-1230
Copyright © 2005. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos