covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Amilina: del estudio molecular a las acciones fisiológicas
Información de la revista
Vol. 48. Núm. 8.
Páginas 234-245 (octubre 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 48. Núm. 8.
Páginas 234-245 (octubre 2001)
Acceso a texto completo
Amilina: del estudio molecular a las acciones fisiológicas
Amylin: from molecular biology to physiology
Visitas
37358
I. Rojas
Autor para correspondencia
irojas@wanadoo.es

Correspondencia: Dra. I. Rojas. Centro de Diabetología. Fundación Sardà Farriol. Paseo de la Bonanova, 69, 6.a planta. 08017 Barcelona.
, A. Novials
Centro de Diabetología. Fundación Sardà Farriol. Barcelona
Este artículo ha recibido
Información del artículo

La amilina (en terminologia anglosajona, islet amyloid polypeptide [IAPP]) es un peptido de 37 aminoacidos sintetizado y cosecretado con la insulina por la celula β-pancreatica en respuesta a los mismos estimulos secretagogos. Este peptido constituye el principal componente de los depositos de sustancia amiloide que aparecen en los islotes pancreaticos de la inmensa mayoria de individuos que padecieron diabetes mellitus (DM) tipo 2 clinicamente establecida, constituyendo un hecho caracteristico de esta enfermedad. Actualmente, se considera que la presencia de depositos de sustancia amiloide ejerce un papel critico en la progresiva disfuncion y destruccion de la poblacion celular β que se produce en el curso evolutivo de la DM tipo 2. No obstante, los mecanismos moleculares responsables de la conversion de la amilina en fibras insolubles son, en gran parte, desconocidos. La presencia de mutaciones en el gen de la amilina y la sobreexpresion del peptido han sido involucradas en el desarrollo de la amiloidosis en los islotes pancreaticos y de la DM tipo 2. El gen codificante para la amilina humana esta ubicado en el brazo corto del cromosoma 12, y contiene tres exones y dos intrones. La creacion de modelos de ratones transgenicos proporciono la oportunidad de estudiar in vivo la formacion de los depositos de amiloide en los islotes pancreaticos y las acciones de la amilina humana.

El proposito de este articulo es efectuar una revision de la importancia del amiloide pancreatico en la patogenia y tratamiento de la DM tipo 2, asi como de las acciones fisiologicas de la amilina.

Palabras clave:
Amilina
IAPP
DM tipo 2

Islet amyloid polypeptide (IAPP), also known as amylin, is a 37-amino acid peptide wich is synthesized and cosecreted with insulin from pancreatic islet-β cells in response to the same secretagogue stimuli. This peptide is the primary consituent of amyloid deposits, which are found in pancreatic islet of the vast majority of individuals with well-established type 2 diabetes, and constitutes a characteristic feature of the disease process. There is increasing evidence suggesting that the presence of islet storage has an important role in progressive β-cell dysfunction and β-cell loss in type 2 diabetes. However, the molecular mechanism responsible for the conversion of IAPP to insoluble fibrils still remain largely unknown. Mutations of the IAPP gene and overexpression of the peptide have been involved in islet amyloidogenesis and type 2 diabetes. The gene encoding human IAPP is located on the short arm of chromosome 12, and contains three exons and two introns. The creation of transgenic mouse models allowed the opportunity to study in vivo the formation of amyloid islet and the actions of human IAPP. This article reviews the importance of amyloid islet in the pathogenesis and treatment of type 2 diabetes and the physiologic actions of IAPP.

Key words:
Amylin
IAPP
Type 2 DM
El Texto completo está disponible en PDF
Bibliografía
[1.]
E.L. Opie.
The relation of diabetes mellitus to lesions of the pancreas: hyaline degeneration of the islands of Langerhans.
J Exp Med, 5 (1901), pp. 527-540
[2.]
P. Westermark, C. Wernstedt, E. Wilander, K. Sletten.
A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas.
Biochem Bophys Res Commun, 140 (1986), pp. 827-831
[3.]
P. Westermark, C. Wernstedt, E. Wilander, D.W. Hayden, T.D. O'Brien, K.H. Johnson.
Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells.
Proc Natl Acad Sci USA, 84 (1987), pp. 3881-3885
[4.]
G.J.S. Cooper, A.C. Willis, A. Clark, R.C. Turner, R.B. Sim, K.B.M. Reid.
Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients.
Proc Natl Acad Sci USA, 84 (1987), pp. 8628-8632
[5.]
L.C. Serpell, M. Sunde, M.D. Benson, G.A. Tennent, M.B. Pepys, P.E. Fraser.
The protofilament subestructure of amyloid fibrils.
J Mol Biol, 300 (2000), pp. 1033-1039
[6.]
G.G. Glenner.
Amyloid deposits and amyloidosis: the beta-fibrilloses.
N Engl J Med, 302 (1980), pp. 1283-1292
[7.]
M. Sunde, L.C. Serpell, M. Bartlam, P.E. Fraser, M.B. Pepys, C. Blake.
Common core structure of amyloid fibrils by synchrotron X-ray diffraction.
J Mol Biol, 273 (1997), pp. 729-739
[8.]
W.L. Hutchinson, E. Hohenester, M.B. Pepys.
Human serum amyloid P component is a single uncomplexed pentamer in whole serum.
Mol Med, 6 (2000), pp. 482-493
[9.]
S.B. Charge, M.M. Esiri, C.A. Bethune, B.C. Hansen, A. Clark.
Apolipoprotein E is associated with islet amyloid and other amyloidoses: implications for Alzheimer's disease.
[10.]
I.D. Young, L. Ailles, S. Narindrasorasak, R. Tan, R. Kisilevsky.
Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus.
Arch Pathol Lab Med, 116 (1992), pp. 951-954
[11.]
S.E. Kahn, S. Andrikopoulos, C.B. Verchere.
Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes.
Diabetes, 48 (1999), pp. 241-253
[12.]
P. Westermark.
Quantitative studies on amyloid in the islets of Langerhans.
Ups J Med Sci, 77 (1970), pp. 91-94
[13.]
A. Clark, M.F. Saad, T. Nezzer, C. Uren, W.C. Knowler, P.H. Bennett, et al.
Islet amyloid polypeptide in diabetic and non-diabetic pima Indians.
Diabetologia, 33 (1990), pp. 285-289
[14.]
P. Westermark.
Amyloid and polypeptide hormones: what is their relationship?.
Amyloid, 1 (1997), pp. 47-60
[15.]
P. Westermark, C. Wernstedt, T.D. O'Brien, D.W. Hayden, K.H. Johnson.
Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone.
Am J Pathol, 127 (1987), pp. 414-417
[16.]
C.F. Howard.
Longitudinal studies on the development of diabetes in individual Macaca nigra.
Diabetologia, 29 (1986), pp. 301-306
[17.]
T.D. O'Brien, A.E. Butler, P.C. Roche, K.H. Johson, P.C. Butler.
Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis.
Diabetes, 43 (1994), pp. 329-336
[18.]
M. Nishi, T. Sanke, S. Nagamatsu, G.I. Bell, D.F. Steiner.
Islet amyloid polypeptide: a new β-cell secretory product related to islet amyloid deposits.
J Biol Chem, 265 (1990), pp. 4173-4176
[19.]
S.E. Kahn, D.A. D'Alessio, M.W. Schwarts, W.Y. Fujimoto, J.W. Ensinck, G.J. Taborsky Jr, et al.
Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells.
Diabetes, 39 (1990), pp. 634-638
[20.]
P.C. Butler, J. Chou, W.B. Carter, Y.N. Wang, B.H. Bu, D. Chang, et al.
Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans.
Diabetes, 39 (1990), pp. 752-756
[21.]
E. Hartter, T. Svoboda, B. Ludvik, M. Schuller, B. Lell, E. Kuenburg, et al.
Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans.
Diabetologia, 34 (1991), pp. 52-54
[22.]
Cooper GJS.
Amylin compared with calcitonin gene-related peptide. Structure, biology, and relevance to metabolic disease.
Endocr Rev, 15 (1994), pp. 163-201
[23.]
T. Sanke, G.I. Bell, C. Sample, A.H. Rubenstein, D.F. Steiner.
An islet amyloid peptide derived from a 89-amino acid precursor by proteolytic processing.
J Biol Chem, 263 (1988), pp. 17243-17246
[24.]
A. Lukinius, E. Wilander, G.T. Westermark, U. Engstrom, P. Westermark.
Co-localization of islet amyloid polypeptide in the B cell secretory granules of the human pancreatic islet.
Diabetologia, 32 (1989), pp. 240-244
[25.]
E.M. Bailyes, K.I. Shennan, A.J. Seal, S.P. Smeekens, D.F. Steiner, J.C. Hutto, et al.
A member of the eukaryotic subtilisin family (PC3) has the enzymic properties of the type 1 proinsulin-converting endopeptidase.
Biochem J, 285 (1992), pp. 391-394
[26.]
M.E. Roder, D. Porte, R.S. Schwartz, S.E. Kahn.
Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus.
J Clin Endocrinol Metab, 83 (1998), pp. 604-608
[27.]
M. Nishi, T. Sanke, S. Seino, R. Eddy, Y.S. Fan, M.G. Byers, et al.
Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal localization, and evolutionary history.
Mol Endocrinol, 3 (1989), pp. 1775-1781
[28.]
J.M.N. Hoovers, E. Redeker, F. Speleman, J.W.M. Hoppener, S. Bhola, J. Bliek, et al.
High-resolution chromosomal localization of the human calcitonin/CGRP/IAPP gene family.
Genomics, 15 (1993), pp. 525-529
[29.]
L. Christmanson, F. Rorsman, G. Stenman, P. Westermark, C. Betsholtz.
The human islet amyloid polypeptide (IAPP) gene. Organization, chromosomal localization and functional identification of a promoter region.
FEBS Letters, 267 (1990), pp. 160-166
[30.]
M.D. Carty, J.S. Lillquist, M. Peshavaria, R. Stein, W.C. Soeller.
Identification of cis-and trans-active factors regulating human islet amyloid polypeptide gene expression in pancreatic β-cells.
J Biol Chem, 272 (1997), pp. 11986-11993
[31.]
S. Mosselman, J.W.M. Hoppener, L. De Wit, W. Soeller, C.J.M. Lips, H.S. Jansz.
IAPP/amylin gene transcriptional control region: evidence for negative regulation.
FEBS Letts, 271 (1990), pp. 33-36
[32.]
M.S. German, L.G. Moss, J. Wang, W.J. Rutter.
The insulin and islet amy-loid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.
Mol Cell Biol, 12 (1992), pp. 1778-1788
[33.]
K. Ekawa, M. Nishi, S. Ohagi, T. Sanke, K. Nanjo.
Cloning of mouse islet amyloid polypeptide gene and characterization of its promoter.
J Mol Endocrinol, 19 (1997), pp. 79-86
[34.]
H. Watada, Y. Kajimoto, H. Kaneto, T. Matsuoka, Y. Fujitani, J. Miyazaki, et al.
Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription.
Biochem Biophys Res Comm, 229 (1996), pp. 746-751
[35.]
J. Jonsson, L. Carlsson, T. Edlund, H. Edlund.
Insulin-promoter-factor 1 is required for pancreas development in mice.
Nature, 371 (1994), pp. 606-609
[36.]
D. Bretherton-Watt, N. Gore, D.S. Boam.
Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide/ amylin gene promoter.
Biochem J, 313 (1996), pp. 495-502
[37.]
H.V. Petersen, P. Serup, J. Leonard, B.K. Michelsen, O.D. Madsen.
Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STF1/IPF1 acting through the CT boxes.
Proc Natl Acad Sci USA, 91 (1994), pp. 10465-10469
[38.]
H. Edlund.
Transcribing pancreas.
Diabetes, 47 (1998), pp. 1817-1823
[39.]
U. Ahlgren, J. Jonsson, L. Jonsson, K. Simu, H. Edlund.
Beta-cell specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the betacell phenotype and maturity onset of diabetes.
Genes Dev, 12 (1998), pp. 1763-1768
[40.]
H.V. Petersen, M. Peshavaria, A.A. Pedersen, J. Philippe, R. Stein, O.D. Madsen, et al.
Glucose stimulates the activation domain potential of the PDX-1 homeodomain transcription factor.
FEBS Lett, 43 (1998), pp. 362-366
[41.]
W.M. MacFarlane, C.M. McKinnon, Z.A. Felton-Edkins, H. Cragg, R.F. James, K. Docherty.
Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells.
J Biol Chem, 274 (1999), pp. 1011-1016
[42.]
W.M. MacFarlane, S.B. Smith, R.F. James, A.D. Clifton, Y.N. Doza, P. Cohen, et al.
The p38/reactivating kinase mitogen-activated protein Kinase cascade mediates the activation of the transcription factor insulin upstream factor 1 and insulin gene transcription by high glucose in pancreatic beta-cells.
J Biol Chem, 272 (1997), pp. 20936-20944
[43.]
M. Stridsberg, S. Sandler, E. Wilander.
Cosecretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic islets following stimulation or inhibition of β cell function.
Regul Pept, 45 (1993), pp. 363-370
[44.]
A. Novials, Y. Sarri, R. Casamitjana, F. Rivera, R. Gomis.
Regulation of islet amyloid polypeptide in human pancreatic islets.
Diabetes, 42 (1993), pp. 1514-1519
[45.]
S. Enoki, T. Mitsukawa, J. Takemura, M. Nakazato, J. Aburaya, H. Toshimori, et al.
Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus.
Diabetes Res Clin Pract, 15 (1992), pp. 97-102
[46.]
S.E. Kahn, C.B. Verchere, S. Andrikopoulos, P.J. Asberry, D.L. Leonetti, P. Wahl, et al.
Reduced amylin release is a characteristic of impaired glucose tolerance and type 2 diabetes in Japanese Americans.
Diabetes, 47 (1998), pp. 640-645
[47.]
J. Rachman, M.J. Payne, J.C. Levy, B.A. Barrow, R. Holman, R.C. Turner.
Changes in amylin and amylin-like peptide concentrations and β-cell function in response to sulfonylurea or insulin therapy in NIDDM.
Diabetes Care, 21 (1998), pp. 810-816
[48.]
C.J. Dechenes, C.B. Verchere, S. Andrikopoulos, S.E. Kahn.
Human aging is associated with parallel reductions in insulin and amylin release.
Am J Physiol, 275 (1998), pp. E785-E791
[49.]
B. Ludvik, M. Clodi, A. Kautzky-Willer, M. Schuller, H. Graf, E. Hartter, et al.
Increased levels of circulating islet amyloid polypeptide in patients with chronic renal failure have no effect on insulin secretion.
J Clin Invest, 94 (1994), pp. 2045-2050
[50.]
A. Kautzky-Willer, K. Thomaseth, B. Ludvik, P. Nowotny, D. Rabensteiner, W. Waldhausl, et al.
Elevated islet amyloid pancreatic polypeptide and proinsulin in lean gestational diabetes.
Diabetes, 46 (1997), pp. 607-614
[51.]
C.F. Semenkovich, J.W. Heinecke.
The mystery of diabetes and atherosclerosis. Time for a new plot.
Diabetes, 46 (1997), pp. 327-334
[52.]
J. Davignon, J.S. Cohn, L. Mabile, L. Bernier.
Apolipoprotein E and atherosclerosis: insight from animal and human studies.
Clin Chim Acta, 286 (1999), pp. 115-143
[53.]
J. Dallongeville, S. Lussier-Cacan, J. Davignon.
Modulation of plasma trygliceride levels by apoE phenotype: a meta-analysis.
J Lipid Res, 33 (1992), pp. 447-457
[54.]
D.C. Rubinsztein, D.F. Easton.
Apolipoprotein E genetic variation and Alzheimer's disease: a meta-analysis.
Dement Geriatr Cogn Disord, 10 (1999), pp. 199-209
[55.]
S.K. Basu, Y.K. Ho, M.S. Brown, D.W. Bilheimer, R.G. Anderson, J.L. Goldstein.
Biochemical and genetic studies of the apoprotein E secreted by mouse macrophages and human monocytes.
J Biol Chem, 257 (1982), pp. 9788-9795
[56.]
D. Sanan, K.H. Weisgraver, S.J. Russell, R.W. Mahley, D. Huang, A. Saunders, et al.
Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils: isoform E4 associates more efficiently than apoE3.
J Clin Invest, 94 (1994), pp. 860-869
[57.]
R. Kisilevski, P.E. Fraser.
Aβ amyloidogenesis: unique, or variation on a systemic theme?.
Crit Rev Biochem Mol Biol, 32 (1997), pp. 361-404
[58.]
G.M. Castillo, W. Lukito, T.N. Wight, A.D. Snow.
The sulfate moietie of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation.
J Neurochem, 72 (1999), pp. 1681-1687
[59.]
G.M. Castillo, J.A. Cummings, W. Yang, M.E. Judge, M.J. Sheardown, K. Rimvall, et al.
Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan's enhancement of islet amyloid polypetide (amylin) fibril formation.
Diabetes, 47 (1998), pp. 612-620
[60.]
P. Westermark, U. Engstrom, K.H. Johson, G.T. Westermark, C. Betsholtz.
Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation.
Proc Natl Acad Sci USA, 13 (1990), pp. 5036-5040
[61.]
J.B. Martin.
Molecular basis of neurodegenerative disorders.
N Engl J Med, 340 (1999), pp. 1970-1980
[62.]
S. Sakagashira, T. Sanke, T. Hanabusa, H. Shimomura, S. Ohagi, Kumagaye Ky, et al.
Missense mutation of amylin gene (S20G) in Japanese NIDDM patients.
Diabetes, 45 (1996), pp. 1279-1281
[63.]
S. Sakagashira, H.J. Hidinga, K. Tateishi, T. Sanke, T. Hanabusa, J. Nanjo, et al.
S20G mutant amylin exhibits increased intracellular cytotoxicity compared to wild-type amylin.
Am J Pathol, 157 (2000), pp. 2101-2109
[64.]
T.D. O'Brien, R.A. Rizza, J.A. Carney, P.C. Butler.
Islet amyloidosis in a patient with chronic massive insulin resistance due to antiinsulin receptor antibodies.
J Clin Endocrinol Metab, 79 (1994), pp. 290-292
[65.]
B. Ludvik, A. Berzlanovich, E. Hartter, B. Lell, R. Prager, H. Graf.
Increased amylin levels in patients on chronic haemodialysis.
Nephrol Dial Transplant, 8 (1990), pp. 694-695
[66.]
J.W.M. Hoppener, J.S. Verbeek, E.J.P. De Koning, C. Oosterwijk, K.L. Van Hulst, H.J. Visser-Vernooy, et al.
Chronic overproduction of islet amyloid polypeptide/amylin in transgenic mice: lysosomal localization of human islet amyloid polypeptide and lack of marked hyperglycaemia or hyperinsulinaemia.
Diabetologia, 36 (1993), pp. 1258-1265
[67.]
J. Janson, W.C. Soeller, P.C. Roche, R.T. Nelson, A.J. Torchia, D.K. Kreutter, et al.
Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide.
Proc Natl Acad Sci USA, 93 (1996), pp. 7283-7288
[68.]
J.W.M. Hoppener, C. Oosterwijk, M.G. Nieuwenhuis, G. Posthuma, J.H. Thijssen, T.M. Vroom, et al.
Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model.
Diabetologia, 42 (1999), pp. 427-434
[69.]
K.L. Van Hulst, C. Oosterwijkt, W. Born, T.M. Vroom, M.G. Nieuwenhuis, M.A. Blankenstein, et al.
Islet amyloid polypeptide/amylin messenger RNA and protein expression in human insulinomas in relation to amyloid formation.
Eur J Endocrinol, 140 (1999), pp. 69-78
[70.]
J.W.M. Hoppener, B. Ahren, C.J.M. Lips.
Islet amyloid and type 2 diabetes mellitus.
N Engl J Med, 343 (2000), pp. 411-419
[71.]
W.C. Soeller, J. Janson, S.E. Hart, J.C. Parker, M.D. Carty, R.W. Stevenson, et al.
Islet amyloid-associated diabetes in obese Avy/a mice expressing human islet amyloid polypeptide.
Diabetes, 47 (1998), pp. 743-750
[72.]
M. Couce, L.A. Kane, T.D. O'Brien, J. Charleswoth, W. Soeller, J. McNeish, et al.
Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and beta-cell dysfunction.
Diabetes, 45 (1996), pp. 1094-1101
[73.]
A. Kapurniotu, J. Bernhagen, N. Greenfield, Y. Al-Abed, S. Teichberg, R.W. Frank, et al.
Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide.
Eur J Biochem, 251 (1998), pp. 208-216
[74.]
C. Rocken, R.P. Linke, W. Saeger.
Immunohistology of islet amyloid polypeptide in diabetes mellitus: semi-quantitative studies in a postmortem series.
Virchows Arch, 421 (1992), pp. 339-344
[75.]
A. Lorenzo, B. Razzaboni, G.C. Weir, B.A. Yankner.
Pancreatic islet cell toxicity of amylin associated with type 2 diabetes mellitus.
Nature, 368 (1994), pp. 756-760
[76.]
S. Janciauskiene, B. Ahren.
Different sensitivity to the cytotoxic action of the IAPP fibrils in two insulin-producing cell lines, HIT-T15 and RINm5F cells.
Biochem Biophys Res Commun, 251 (1998), pp. 888-893
[77.]
S. Janciauskiene, B. Ahren.
Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines.
Biochem Biophys Res Commun, 267 (2000), pp. 619-625
[78.]
S. Zhang, J. Liu, E.L. Saafi, G.J. Cooper.
Induction of apoptosis by human amylin in RINm5F islet beta-cells is associated with enhanced expression of p53 and p21WAF1/C1P1.
FEBS Lett, 455 (1999), pp. 315-320
[79.]
T.A. Mirzabekov, M.C. Lin, B. Kagan.
Pore formation by the cytotoxic islet amyloid peptide amylin.
J Biol Chem, 271 (1996), pp. 1988-1992
[80.]
J.Z. Bai, E.L. Saafi, S. Zhang, G.J.S. Cooper.
Role of Ca2+ in apoptosis evoked by human amylin in pancreatic islet β-cells.
Biochem J, 343 (1999), pp. 53-61
[81.]
L.R. McLean, A. Balasubramaniam.
Promotion of beta-structure by interaction of diabetes associated polypeptide (amylin) with phosphatidylcholine.
Biochim Biophys Acta, 1122 (1992), pp. 317-320
[82.]
J. Janson, R.H. Ashley, D. Harrison, S. McIntyre, P.C. Butler.
The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles.
Diabetes, 48 (1999), pp. 491-498
[83.]
J.E. Morley, J.F. Flood.
Amylin decreases food intake in mice.
Peptides, 12 (1991), pp. 865-869
[84.]
M. Zaidi, H.K. Datta, P.J.R. Bevis, S.J. Wimalawansa, I. MacIntyre.
Amylin-amide: a new bone-conserving peptide from the pancreas.
Exp Physiol, 75 (1990), pp. 529-536
[85.]
S.D. Brain, S. Wimalawansa, I. MacIntyre, T.J. Williams.
The demonstra-tion of vasodilatador activity of pancreatic amylin amide in the rat.
Am J Pathol, 136 (1990), pp. 487-490
[86.]
G.J.S. Cooper, B. Leighton, G.D. Dimitriadis, M. Parry-Billings, J.W. Kowalchuk, K. Howland, et al.
Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle.
Proc Natl Acad Sci USA, 85 (1988), pp. 7763-7766
[87.]
A.A. Young, B. Gedulin, D. Wolfe-Lopez, H.E. Greene, T.J. Rink, G.J. Cooper.
Amylin and insulin in rat soleus muscle: dose responses for cosecreted noncompetitive anatagonists.
Am J Physiol, 263 (1992), pp. E274-E281
[88.]
A.A. Young, D.M. Mott, K. Stone, G.J. Cooper.
Amylin activates glycogen phosphorylase in the isolated soleus muscle of the rat.
FEBS Lett, 281 (1991), pp. 149-151
[89.]
D.A. Young, R.O. Deems, R.W. Deacon, R.H. McIntosh, J.E. Foley.
Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro.
Am J Physiol, 259 (1990), pp. E457-E461
[90.]
A.A. Young, M.W. Wang, G.J. Cooper.
Amylin injection causes elevated plasma lactate and glucose in the rat.
FEBS Lett, 291 (1991), pp. 101-104
[91.]
A. Ar'Rajab, B. Ahren.
Effects of amidated rat islet amyloid polypeptide on glucose-stimulated insulin secretion in vivo and in vitro in rats.
Eur J Pharmacol, 192 (1991), pp. 443-445
[92.]
R.A. Silvestre, M. Salas, P. Degano, E. Peiro, J. Marco.
Reversal of the inhibitory effect of calcitonin gene-related peptide (CGRP) and amylin by the 8-37 fragment of the human CGRP.
Biochem Pharmacol, 45 (1993), pp. 2343-2347
[93.]
F. Wang, J. Permert, C.G. Ostenson.
Islet amyloid polypeptide regulates multiple steps in stimulus-secretion coupling of β cells in rat pancreatic islets.
Pancreas, 20 (2000), pp. 264-269
[94.]
B.R. Gedulin, T.J. Rink, A.A. Young.
Dose-response for glucagonostatic effects of amylin in rats.
Metabolism, 46 (1997), pp. 67-70
[95.]
M.F. Kong, P. King, I.A. MacDonald, T.A. Stubbs, A.C. Perkins, P.E. Blackshaw, et al.
Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with NIDDM.
Diabetologia, 40 (1997), pp. 82-88
[96.]
B. Gedulin, A.A. Young.
Hypoglycemia overrides amylin-mediated regulation of gastric emptying in rats.
Diabetes, 47 (1997), pp. 93-97
[97.]
Cooper GJS.
Amylin compared with calcitonin gene-related peptide. Structure, biology, and relevance to metabolic disease.
Endocr Rev, 15 (1994), pp. 163-201
[98.]
P.A. Rushing, M.M. Hagan, R.J. Seeley, T.A. Lutz, S.C. Woods.
Amylin: a novel action in the brain to reduce body weight.
Endocrinology, 141 (2000), pp. 850-853
[99.]
R.G. Thompson, L. Pearson, S.L. Schoenfeld, O.G. Kolterman.
The Pramlintide in Type 2 Diabetes Group. Pramlintide, a synthetic analog of human amylin, improves the metabolic profile of patients with type 2 diabetes using insulin.
Diabetes Care, 21 (1998), pp. 987-993
[100.]
P.J. Wookey, C. Tikellis, H.C. Du, H.F. Qin, P.M. Sexton, M.E. Cooper.
Amylin binding in rat renal cortex, stimulation of adenylyl cyclase, and activation of plasma renin.
Am J Physiol, 39 (1996), pp. F289-F294
[101.]
W. Vine, P. Smith, R. LaChapell, E. Blase, A. Young.
Effects of rat amylin on renal function in the rat.
Horm Metab Res, 30 (1998), pp. 518-522
[102.]
A.S. Alam, B.S. Moonga, P.J. Bevis, C.L. Huang, M. Zaidi.
Amylin inhibits bone resorption by a direct effect on the motility of rat osteoclasts.
Exp Physiol, 78 (1993), pp. 183-196
[103.]
A.K. Borm, M.S. Klevesath, V. Borcea, C. Kasperk, M.J. Seibel, P. Wahl, et al.
The effect of pramlintide (amylin analogue) treatment on bone metabolism and bone density in patients with type 1 diabetes.
Horm Metab Res, 31 (1999), pp. 472-475
[104.]
S.M. Gardiner, A.M. Compton, P.A. Kemp, T. Bennet, C. Bose, R. Foulkes, et al.
Antagonistic effect of human α-calcitonin gene-related peptide (8-37) on regional hemodynamic actions of rat islet amyloid polypeptide in conscious Long-Evans rats.
Diabetes, 40 (1991), pp. 948-951
[105.]
D.F. Kruger, P.M. Gatcomb, S.K. Owen.
Clinical implications of amylin and amylin deficiency.
Diabetes Educ, 25 (1999), pp. 389-397
[106.]
G. Thompson, J. Peterson, A. Gottlieb, J. Mullane.
Effects of pramlintide, an analog of human amylin on plasma glucose profiles in patients with IDDM. Results of a multicenter trial.
Diabetes, 46 (1997), pp. 632-636
[107.]
G. Thompson, L. Pearson, O.G. Kolterman.
Effects of 4 weeks' administration of pramlintide, a human amylin analogue, on glycaemia control in patients with IDDM: effects on plasma glucose profiles and serum fructosamine concentrations.
Diabetologia, 40 (1997), pp. 1278-1285
[108.]
P. Westermark, Z.C. Li, G.T. Westermark, A. Leckstrom, D.F. Steiner.
Effects of beta cell granules components on human islet amyloid polypeptide fibril formation.
FEBS Lett, 379 (1996), pp. 203-206
[109.]
J.D. Gillmore, P.N. Hawkins, M. Pepys.
B. Amyloidosis: a review of recent diagnostic and therapeutic developments.
Br J Haematol, 99 (1997), pp. 245-256
[110.]
R.N. Kulkarni, D.M. Smith, M.A. Ghatei, P.M. Jones, S.R. Bloom.
Investigation of the effects of antisense oligodeoxynucleotides to islet amyloid polypeptide mRNA on insulin release, content and expression.
J Endocrinol, 151 (1996), pp. 341-348
[111.]
A. Novials, J.C. Jimenez-Chillaron, C. Franco, R. Casamitjana, R. Gomis, A.M. Gomez-Foix.
Reduction of islet amyloid expression and basal secretion by adenovirus-mediated delivery of amylin antisense cDNA.
Pancreas, 17 (1998), pp. 182-186
[112.]
T. Lindstrom, A. Leckstrom, P. Westermark, H.J. Arnqvist.
Effect of insulin treatment on circulating islet amyloid polypeptide in patients with NIDDM.
[113.]
B. Zapecka-Dubno, A. Czyzyk, A. Dworak, M.I. Bak.
Treatment with metformin in NIDDM patients lowers plasma amylin level.
Diabetologia, 40 (1997), pp. A316
[114.]
S.E. Inzucchi, D.G. Maggs, G.R. Spollet, S.L. Page, F.S. Rife, V. Walton, et al.
Efficacy and metabolic effects of metformin and troglytazone in type II diabetes mellitus.
N Engl J Med, 338 (1998), pp. 867-872
[115.]
R. Kisilevsky.
Anti-amyloid drugs: potential in the treatment of diseases associated with aging.
Drugs Aging, 8 (1996), pp. 75-83
[116.]
B. Solomon, R. Koppel, D. Frankel, E. Hanan Aharon.
Disaggregation of Alzheimer β-amyloid by site-directed mAb.
Proc Natl Acad Sci USA, 94 (1997), pp. 4109-4112
[117.]
C. Soto, E.M. Sigurdsson, L. Morelli, R.A. Kumar, E.M. Castano, B. Frangione.
Beta sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy.
Nat Med, 4 (1998), pp. 822-826
Copyright © 2001. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos