:La glándula pineal de los mamíferos funciona como una interfase neuroendocrina, transformando los cambios de luz ambiental en un mensaje hormonal: la síntesis y liberación nocturna de melatonina. La noradrenalina, liberada desde las terminaciones nerviosas simpáticas procedentes del ganglio cervical superior, interactúa con los receptores β- y α1-noradrenérgicos situados en la membrana del pinealocito, iniciando una serie de acontecimientos que culminan en la síntesis de melatonina. La estimulación del receptor β activa la adenilato ciclasa, produciendo un rápido incremento en los valores intracelulares de adenosín monofosfato complementario (AMPc), la activación de una proteína cinasa dependiente de AMPc y la fosforilación del factor de transcripción CREB. La interacción del CREB fosforilado con las secuencias específicas en el ADN induce la expresión de la serotonina N-acetil transferasa (SNAT), enzima que cataliza el paso limitante en la síntesis de melatonina. El CREB fosforilado también activa la expresión de una proteína represora que bloquea la transcripción de la SNAT. El receptor α1 potencia la respuesta β- noradrenérgica activando una proteína cinasa dependiente de Ca+2 y de la hidrólisis de fosfatidilinositol. Además del control nervioso, se ha demostrado que la biosíntesis de melatonina se ve afectada por las oscilaciones de los valores circulantes de esteroides gonadales. En células pineales, las hormonas sexuales regulan directamente la respuesta a la estimulación adrenérgica y, de forma recíproca, la noradrenalina regula la cinética del receptor de estrógenos. En otras áreas del sistema nervioso se han descrito interacciones similares entre hormonas y neurotransmisores, lo que podría representar un mecanismo básico en los procesos de integración neuroendocrina a escala celular. La glándula pineal constituye un modelo extremadamente útil para la disección de los componentes de tales mecanismos.
:The mammalian pineal gland is as a neuroendocrine interface that converts enviromental lighting conditions into a humoral message: the nocturnal synthesis and release of melatonin. Norepinephrine released from postganglionic symphathetic nerve terminals arising from the superior cervical ganglia, acts on β- and α1-noradrenergic receptors in the pinealocyte membrane and initiates a series of events leading to melatonin synthesis. β-adrenoceptor stimulation activates adenyl cyclase resulting in a rapid increase in intracellular cAMP levels, activation of cAMP-dependent protein kinase, and phosphorylation of cAMP-response element binding protein (CREB). The interaction of phosphorylated CREB with a cAMPresponse element induces the expression of serotonin Nacetyltransferase (SNAT), the enzyme that catalyses the rate limiting setp in melatonin synthesis. Phosphorylated CREB also activates the expression of an inducible cAMP early repressor which represses cAMP-induced SNAT transcription. α1 adrenoreceptor activation potentiates β-action through a Ca+2-phospholipid-dependent protein kinase. In addition to this neural control, it has been shown that physiological oscillations of gonadal steroids, or those induced by experimental manipulations, also affect pineal melatonin synthesis and secretion. Gonadal steroids directly regulate pineal adrenoreceptor responsiveness. In addition, the levels of cytoplasmatic estrogen receptor and its traslocation to the nucleus are under control of sympathetic nerves via norephinephrine and β-adrenoceptor-mediated mechanisms. This type of interactions have been described in other parts of the nervous system, suggesting that they may represent a basic regulatory mechanism of neuroendocrine integration at the cellular level. Therefore, the rat pineal gland may constitute an extremely useful model to dissecting the different components of such mechanisms.