La reproducción en las hembras de mamíferos es extremadamente sensible a la disponibilidad de combustibles metabólicos. Esta relación entre la homeostasis energética y la reproducción ha sido reconocida durante décadas. Así, la restricción dietética intensa, los estados catabólicos y el exceso del gasto energético deterioran la fertilidad humana. Del mismo modo, la obesidad resultante de una mayor ingestión que la requerida por el cuerpo está asociada con situaciones de infertilidad como en el síndrome de ovarios policísticos. Por ello, la reproducción, la ingestión de alimento y la utilización de combustibles constituyen las respuestas homeostáticas reguladas por señales metabólicas. Así, la capacidad reproductiva en organismos inferiores como el gusano y la mosca está también influida por la disponibilidad de alimento y las reservas de energía. Sin embargo, el modo preciso de la regulación de la actividad reproductiva por la nutrición y la energía metabólica continúa siendo una cuestión sin resolver de la biología moderna. Se postula que la insulina es la principal hormona reguladora del metabolismo de hidratos de carbono en el organismo y junto con las rutas de señales dependientes de ella, desempeña un papel primordial en la homeostasis de combustibles metabólicos. Verificaciones recientes procedentes de modelos animales demuestran que la acción de la insulina también regula la ingestión de comida, el peso corporal y la capacidad de reproducción, implicando a las rutas de señalización de la insulina como la conexión mecanística entre el metabolismo y la regulación neuroendocrina de la fertilidad. La deleción de IRS-2, uno de los principales sustratos del receptor de insulina, produce en el ratón defectos tanto metabólicos como reproductivos. Las ratonas deficientes en IRS-2 demuestran una moderada intolerancia a glucosa, resistencia a insulina, hiperfagia y una discreta obesidad. Curiosamente, estos animales son infértiles debido a defectos en el ovario y/o en el eje hipotálamo-pituitario-ovárico. Aquí se revisan las perspectivas históricas del control metabólico de la reproducción haciendo un especial énfasis en las contribuciones de la señalización de la insulina. Además, nuestra revisión se centra en las observaciones recientes del modelo knockout de IRS-2, que nos ha proporcionado una evidencia directa de que la fertilidad requiere la integración de señales metabólicas y reproductivas. Basándonos en el papel de las rutas de señalización de la insulina en la regulación de la fertilidad, el metabolismo y la longevidad en C. elegans y Drosophila, nuestra hipótesis de trabajo es que las rutas de señales mediadas por IRS-2 representan un mecanismo conservado evolutivamente que comunica la homeostasis energética con la fisiología de la reproducción.
In female mammals, reproduction is extremely sensitive to the availability of metabolic fuels. This relationship between energy homeostasis and reproduction has been recognized for decades; severe dietary restriction, catabolic states, and excess energy expenditure impair fertility in humans. Likewise, obesity, resulting from a greater consumption than is used by the body, is also associated with infertile conditions such as polycystic ovary syndrome. Thus, reproduction, food intake, and fuel utilization represent homeostatic responses that are modulated by metabolic signals. Interestingly, reproductive capacity in lower organisms such as C. elegans and Drosophila is also influenced by the availability of food and energy stores. However, precisely how nutrition and energy metabolism regulate reproductive activity remains one of the major unsolved questions of modern biology. As the principal hormone regulating carbohydrate metabolism, insulin and its signaling pathways have been postulated to play a major role in fuel homeostasis. However, recent evidence from mouse models demonstrates that insulin action also regulates food intake, body weight and reproductive capacity, implicating insulin signaling pathways as a mechanistic link between metabolism and neuroendocrine regulation of fertility. Deletion of IRS-2, one of the main substrates of the insulin receptor, produces both metabolic and reproductive defects in mice. Female IRS-2 deficient mice display moderately impaired glucose tolerance, insulin resistance, hyperphagia, and mild obesity. Interestingly, these animals are infertile owing to ovarian failure and/or defects in the hypothalamic-pituitary-ovarian axis. Here, we summarize the historic perspectives of the metabolic control of reproduction with a particular emphasis on the contributions of insulin signaling. Moreover, our review focuses on recent observations from the IRS-2 knockout model which have provided direct evidence that fertility requires the integration of metabolic and reproductive signals. Based on the role of insulinsignaling pathways in the regulation of fertility, metabolism, and longevity in C. elegans and Drosophila, our working hypothesis is that IRS2-mediated pathways represent an evolutionary conserved mechanism to link energy homeostasis to reproductive physiology.