covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Mecanismos de regulación del apetito y síndrome de Prader-Willi
Información de la revista
Vol. 53. Núm. 3.
Páginas 174-180 (marzo 2006)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 53. Núm. 3.
Páginas 174-180 (marzo 2006)
Puesta al día: síndrome de Prader-Willi
Acceso a texto completo
Mecanismos de regulación del apetito y síndrome de Prader-Willi
Mechanisms of food intake and prader-willi syndrome
Visitas
12085
A. Caixàs
Autor para correspondencia
acaixas@cspt.es

Correspondencia: Dra. A. Caixàs. Unitat de Diabetis, Endocrinologia i Nutrició. Hospital de Sabadell. Institut Universitari Parc Taulí. Parc Taulí, s/n. 08208 Sabadell. Barcelona. España.
Unitat de Diabetis, Endocrinologia i Nutrició. Hospital de Sabadell. Institut Universitari Parc Taulí. Universitat Autònoma de Barcelona. Sabadell. Barcelona. España
Este artículo ha recibido
Información del artículo

El síndrome de Prader-Willi (SPW) se caracteriza, entre otros rasgos, por un trastorno de la conducta alimentaria. En comparación con individuos obesos y sanos, su saciedad está retrasada o disminida y, ante una comida libre, la velocidad inicial de la ingesta es menor, pero es continua y constante, sin curva de desaceleración, con lo que la duración del consumo de alimentos es mayor. Se han llevado a cabo múltiples estudios para investigar cuál es la alteración en el hipotálamo que conlleva a este trastorno de la conducta alimentaria. En estudios post mórtem no se ha podido comprobar ninguna alteración en las neuronas NPY/AGRP o POMC/CART. Sin embargo, se ha podido observar una reducción de las neuronas que producen oxitocina en el núcleo PVN, que también podrían desempeñar un papel en la regulación del apetito. En cuanto a los valores periféricos de hormonas, la leptina sigue un patrón general igual que en los individuos sanos; no obstante, existe una cierta hipoinsulinemia en relación con el grado de adiposidad. Los valores del péptido orexígeno ghrelina están elevados y no disminuyen adecuadamente tras la ingesta. Otros péptidos que producen saciedad están disminuidos o no responden adecuadamente tras la ingesta (PYY, PP), presentan resultados contradictorios (CCK) o no están alterados a juzgar por los estudios actuales (GLP-1). En conjunto, los estudios existentes hasta la actualidad reflejan la complejidad de los mecanismos que regulan el apetito en humanos. Probablemente cada uno de estos péptidos contribuya a explicar una parte de la fisiopatología del hambre o la falta de saciedad en el SPW, pero faltan más estudios para poder completar la cadena y desarrollar medidas terapéuticas para evitar la obesidad tan característica de este síndrome.

Palabras clave:
Síndrome de Prader-Willi
Apetito
Hambre
Saciedad
Ghrelina
PYY
PP
Leptina

Prader-Willi Syndrome (PWS) is characterized by impaired eating behavior, among other features. Compared with obese and healthy individuals, patients with PWS show delayed or absent satiety. When food is available ad libitum, food is eaten slowly but constantly and consequently food consumption can be continuous. Multiple studies have been carried out to identify the alteration in the hypothalamus leading to this impaired eating behavior. In post-mortem studies no alterations have been demonstrated in the NPY/AGRP or POMC/CART neurones. However, a reduction in the number of oxytocin neurones in the paraventricular nucleus has been observed, which could play a role in the regulation of food intake. Among the peripheral hormones, leptin shows a general pattern similar to that in healthy individuals. However, there is a certain hypoinsulinemia in relation to the degree of adiposity. Levels of ghrelin, an anorexigenic peptide, are elevated and do not decrease sufficiently after food intake. Other peptides that produce satiety are decreased, do not respond adequately to food intake (PYY, PP), present controversial results (CCK), or remain unaltered in studies performed to date (GLP-1). Taken together, all the studies show the complexity of human appetite regulation mechanisms. Probably, each peptide contributes to explain part of the physiopathology of hunger or lack of satiety in PWS. More studies are needed to complete the chain and to be able to develop therapeutic measures to avoid obesity in this syndrome.

Key words:
Prader-Willi syndrome
Appetite
Hunger
Satiety
Ghrelin
PYY
PP
Leptin
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.E. Whittington, A.J. Holland, T. Webb, J. Butler, D. Clarke, H. Boer.
Population prevalence and estimated birth incidence and mortality rate for people with Prader-Willi syndrome in one UK Health Region.
J Med Genet, 38 (2001), pp. 792-798
[2.]
R.D. Nicholls, J.L. Knepper.
Genome organization function and imprinting in Prader-Willi and Angelman syndromes.
Annu Rev Genomics Hum Genet, 2 (2002), pp. 153-175
[3.]
V.A. Holm, S.B. Cassidy, M.G. Butler, J.M. Hanchett, L.R. Greenswag, B.Y. Whitman, et al.
Prader-Willi syndrome: consensus diagnostic criteria.
Pediatrics, 91 (1993), pp. 398-402
[4.]
M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin.
Central nervous system control of food intake.
Nature, 404 (2000), pp. 661-671
[5.]
M.R. Druce, C.J. Small, S.R. Bloon.
Minireview: gut peptides regulating satiety.
Endocrinology, 145 (2004), pp. 2660-2665
[6.]
W.B. Zipf, G.G. Berntson.
Characteristics of abnormal food-intake patterns in children with Prader-Willi syndrome and study of effects of naloxone.
Am J Clin Nutr, 46 (1987), pp. 277-281
[7.]
A. Fieldstone, W.B. Zipf, M.F. Sarter, G.G. Bertson.
Food intake in Prader-Willi syndrome and controls with obesity after administration of benzodiazepine receptor agonist.
Obes Res, 6 (1998), pp. 29-33
[8.]
A.J. Holland, J. Treasure, P. Coskeran, J. Dallow, N. Milton, E. Hillhouse.
Measurement of excessive appetite and metabolic changes in Prader-Willi syndrome.
Int J Obes, 17 (1993), pp. 527-532
[9.]
A.P. Goldstone, U.A. Unmehopa, S.R. Bloom, D.F. Swaab.
Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects.
J Clin Endocrinol Metab, 87 (2002), pp. 927-937
[10.]
D.F. Swaab, J.S. Purba, M.A. Hofman.
Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases.
J Clin Endocrinol Metab, 80 (1995), pp. 573-579
[11.]
A.P. Goldstone, U.A. Unmehopa, E.L. Thomas, A.E. Brynes, J.D. Bell, G. Frost, et al.
Hypothalamic neuropeptides and regulation of fat mass in Prader-Willi syndrome.
Prader-Willi syndrome as a model for obesity, pp. 31-43.
[12.]
M.H. Ebert, D.E. Schmidt, T. Thompson, M.G. Butler.
Elevated plasma gamma-aminobutyric acid (GABA) levels in individuals with either Prade-Willi syndrome or Angelman syndrome.
J Neuropsychiatry Clin Neurosci, 9 (1997), pp. 75-80
[13.]
J. Wagstaff, J.H.M. Knoll, J. Fleming, E.F. Kirkness, A. Martin-Gallardo, F. Greenberg, et al.
Localization of gene encoding the GABA-A receptor beta-3 unit to Angelman/Prader-Willi region of human chromosome 15.
Am J Hum Genet, 49 (1991), pp. 330-337
[14.]
J.M. Friedman, J.L. Halaas.
Leptin and the regulation of body weight in mammals.
Nature, 395 (1998), pp. 763-770
[15.]
A.P. Goldstone, A.E. Brynes, E.L. Thomas, J.D. Bell, G. Frost, A. Holland, et al.
Resting metabolic rate, plasma leptin concentrations, leptin receptor expression, and adipose tissue measured by whole-body magnetic resonance imaging in women with Prader-Willi syndrome.
Am J Clin Nutr, 75 (2002), pp. 468-475
[16.]
M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, K. Kangawa.
Ghrelin is a growth-hormone-releasing acylated peptide from stomach.
Nature, 402 (1999), pp. 656-660
[17.]
J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, I. Wakabayashi.
Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats.
Diabetes, 50 (2001), pp. 2438-2443
[18.]
A.M. Wren, L.J. Seal, M.A. Cohen, A.E. Brynes, G.S. Frost, K.G. Murphy, et al.
Ghrelin enhances appetite and increases food intake in humans.
J Clin Endocrinol Metab, 86 (2001), pp. 5992-5995
[19.]
D. Cummings, J. Purnell, R. Frayo, K. Schmidova, B. Wisse, D. Weigle.
A prepandrial rise in plasma ghrelin levels suggests a role in meal initiation in humans.
Diabetes, 50 (2001), pp. 1714-1719
[20.]
A. Caixàs, C. Bashore, W. Nash, F.X. Pi-Sunyer, B. Lafarrère.
Insulin, unlike food intake, does not supress ghrelin in human subjects.
J Clin Endocrinol Metab, 87 (2002), pp. 1902-1906
[21.]
O. Giménez, A. Caixàs.
Ghrelina: de la secreción de GH a la regulación del balance energético.
Endocrinol Nutr, 51 (2004), pp. 464-472
[22.]
M. Tschöp, C. Weyer, A. Tataranni, V. Devanarayan, E. Ravussin, M. Heiman.
Circulating ghrelin levels are decreased in human obesity.
Diabetes, 50 (2001), pp. 707-709
[23.]
D. Cummings, D. Weigle, S. Frayo, P. Breen, M. Ma, E. Dellinger, et al.
Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.
N Engl J Med, 346 (2002), pp. 1623-1632
[24.]
D.E. Cummings, K. Clement, J.Q. Purnell, C. Vaisse, K.E. Foster, R.S. Frayo, et al.
Elevated plasma ghrelin levels in Prader-Willi syndrome.
Nat Med, 8 (2002), pp. 643-644
[25.]
A. Delparigi, M. Tschöp, M.L. Heiman, A.D. Salbe, B. Vozarova, S.M. Sell, et al.
High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome.
J Clin Endocrinol Metab, 87 (2002), pp. 5461-5464
[26.]
A.M. Haqq, D.D. Stadler, R.G. Rosenfeld, K.L. Pratt, D.S. Weigle, R.S. Frayo, et al.
Circulating ghrelin levels are suppressed by meals and octeotride therapy in children with Prader-Willi syndrome.
J Clin Endocrinol Metab, 88 (2003), pp. 3573-3576
[27.]
C. Höybye, B. Barkeling, U. Espelund, M. Petersson, M. Thorén.
Peptides associated with hyperphagia in adults with Prader-Willi syndrome before and during GH treatment.
Growth Horm IGF Res, 13 (2003), pp. 322-327
[28.]
T.M. Tan, M. Vanderpump, B. Khoo, M. Patterson, M.A. Ghatei, A.P. Goldstone.
Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome.
J Clin Endocrinol Metab, 89 (2004), pp. 4162-4165
[29.]
C. Bizarri, A.E. Rigamonti, G. Giannone, R. Berardinelli, S.G. Cella, M. Cappa, et al.
Maintenance of a normal meal-induced decrease in plasma ghrelin levels in children with Prader-Willi syndrome.
Horm Metab Res, 36 (2004), pp. 164-169
[30.]
A.P. Goldstone, M. Patterson, N. Kalingag, M.A. Ghatei, A.E. Brynes, S.R. Bloom, et al.
Fasting and post-prandial hyperghrelinemia in Prader-Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY3-36 deficiency or seen in hypothalamic obesity due to craneopharingioma.
J Clin Endocrinol Metab, 90 (2005), pp. 2681-2690
[31.]
T.E. Adrian, G.L. Ferri, A.J. Bacarese-Hamilton, H.S. Fuessl, J.M. Polak, S.R. Bloom.
Human distribution and release of a putative new gut hormone, peptide YY.
Gastroenterology, 89 (1985), pp. 1070-1077
[32.]
M. Tschöp, T.R. Castañeda, H.G. Joost, C. Thöne-reineke, S. Ortmann, S. Klaus, et al.
Does gut hormone PYY3-36 decrease food intake in rodents?.
Nature, 430 (2004), pp. 1-3
[33.]
R.L. Batterham, M.A. Cohen, S.M. Ellis, C.W. Le Roux, D.J. Withers, G.S. Frost, et al.
Inhibition of food intake in obese subjects by peptide YY3-36.
N Engl J Med, 349 (2003), pp. 941-948
[34.]
M.G. Butler, C.D. Bittel, Z. Talebizadeh.
Plasma peptide YY and ghrelin levels in infants and children with Prader-Willi syndrome.
J Ped Endocrinol Metab, 17 (2004), pp. 1177-1184
[35.]
T. Tomita, G. Greeley Jr, L. Watt, V. Doull, R. Chance.
Protein meal-stimulated pancreatic polypeptide secretion in Prader-Willi syndrome of adults.
Pancreas, 4 (1989), pp. 395-400
[36.]
W.B. Zipf, T.M. O’Dorisio, S. Cataland, J. Sotos.
Blunted pancreatic polypeptide responses in children with obesity of Prader- Willi syndrome.
J Clin Endocrinol Metab, 52 (1981), pp. 1264-1266
[37.]
W.B. Zipf, T.M. O’Dorisio, S. Cataland, K. Dixon.
Pancreatic polypeptide responses to protein meal challenges in obese but otherwise normal children and obese children with Prader-Willi syndrome.
J Clin Endocrinol Metab, 57 (1983), pp. 1074-1080
[38.]
R.L. Batterham, C.W. Le Roux, M.A. Cohen, A.J. Park, S.M. Ellis, M. Patterson, et al.
Pancreatic polypeptide reduces appetite and food intake in humans.
J Clin Endocrinol Metab, 88 (2003), pp. 3989-3992
[39.]
W.B. Zipf, T.M. O’Dorisio, G.G. Berntson.
Short-term infusion of pancreatic polypeptide: effect on children with Prader-Willi syndrome.
Am J Clin Nutr, 51 (1990), pp. 162-166
[40.]
G.G. Berntson, W.B. Zipf, T.M. O’Dorisio, J.A. Hoffman, R.E. Chance.
Pancreatic polypeptide infusions reduce food intake in Prader- Willi syndrome.
Peptides, 14 (1993), pp. 497-503
[41.]
G.P. Smith, J. Gibbs.
Satiating effect of cholecystokinin.
Ann NY Acad Sci, 713 (1994), pp. 236-241
[42.]
A.J. Holland, J. Treasure, P. Coskeran, J. Dallow, N. Milton, E. Hillhouse.
Measurement of excessive appetite and metabolic changes in Prader-Willi syndrome.
Int J Obes Relat Metab Disord, 17 (1993), pp. 527-532
[43.]
M.G. Butler, M.G. Carlson, D.E. Schmidt, I.D. Feurer, T. Thompson.
Plasma cholecystokinin levels in Prader-Willi syndrome and obese subjects.
Am J Med Genet, 95 (2000), pp. 67-70
[44.]
J.J. Holst.
Enteroglucagon.
Annu Rev Physiol, 59 (1997), pp. 257-271
[45.]
E. Naslund, M. Gutniak, S. Skogar, S. Rossner, P.M. Hellstrom.
Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men.
Am J Clin Nutr, 68 (1998), pp. 525-530
[46.]
C. Verdich, S. Toubro, B. Buemann, J.J. Holst, J. Bulow, L. Simonsen, et al.
A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans.
J Clin Endocrinol Metab, 86 (2001), pp. 4382-4389
[47.]
A. Flint, A. Raben, A.K. Ersboll, J.J. Holst, A. Astrup.
The effect of the physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity.
Int J Obes Relat Metab Disord, 25 (2001), pp. 781-792
[48.]
A.P. Goldstone, E.L. Thomas, A.E. Brynes, G. Castroman, R. Edwards, M.A. Ghatei, et al.
Elevated fasting plasma ghrelin in Prader-Willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance.
Clin Endocrinol Metab, 89 (2004), pp. 1718-1726
[49.]
M.A. Cohen, S.M. Ellis, C.W. Le Roux, R.L. Batterham, A. Park, M. Patterson, et al.
Oxyntomodulin suppresses appetite and reduces food intake in humans.
J Clin Endocrinol Metab, 88 (2003), pp. 4696-4701
[50.]
C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, et al.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.
J Clin Endocrinol Metab, 86 (2001), pp. 1930-1935
[51.]
A.H. Berg, T.P. Combs, X. Du, M. Brownlee, P.E. Scherer.
The adipocyte- secreted protein Acrp-30 enhances hepatic insulin action.
Nat Med, 7 (2001), pp. 947-953
[52.]
N. Ouchi, S. Kihara, Y. Arita, K. Maeda, H. Kuriyama, Y. Okamoto, et al.
Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.
Circulation, 100 (1999), pp. 2473-2476
[53.]
N. Ouchi, S. Kihara, Y. Arita, Y. Okamoto, K. Maeda, H. Kuriyama, et al.
Adiponectin, an adipocyte-derived plasma protein inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.
Circulation, 102 (2000), pp. 1296-1301
[54.]
T. Yokota, K. Oritani, I. Takahashi, J. Ishikawa, A. Matsuyama, N. Ouchi, et al.
Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages.
Blood, 96 (2000), pp. 1723-1732
[55.]
P.J. English, S.R. Coughlin, K. Hayden, I.A. Malik, J.P.H. Wilding.
Plasma adiponectin increases postprandially in obese, but not in lean, subjects.
Obes Res, 11 (2003), pp. 839-844
[56.]
K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, et al.
Plasma concentrations of a novel, adiposespecific protein, adiponectin, in type 2 diabetic patients.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 1595-1599
[57.]
Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, et al.
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
Biochem Biophys Res Commun, 257 (1999), pp. 79-83
[58.]
M. Matsubara, S. Maruoka, S. Katayose.
Inverse relationship between plasma adiponectin and leptin concentrations in normal- weight and obese women.
Eur J Endocrinol, 147 (2002), pp. 173-180
[59.]
Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, et al.
Adiponectin acts in the brain to decrease body weight.
Nat Med, 10 (2004), pp. 524-529
[60.]
C. Höybe, J.M. Bruun, B. Richelsen, A. Flyvbjerg, J. Frystyk.
Serum adiponectin levels in adults with Prader-Willi syndrome are independent of anthropometrical parameters and do not change with GH treatment.
Eur J Endocrinol, 151 (2004), pp. 457-461
[61.]
A. Caixàs, O. Giménez-Palop, G. Giménez-Pérez, N. Potau, E. Berlanga, J.M. González-Clemente, et al.
Postprandial adiponectin levels are unlikely to contribute to the pathogenesis of obesity in Prader-Willi syndrome.
Horm Res, 65 (2006), pp. 39-45
[62.]
C. Pagano, O. Marin, A. Calcagno, P. Schiappelli, C. Pilon, G. Milan, et al.
Increased serum resistin in adults with Prader-Willi syndrome is related to obesity and not to insulin resistance.
J Clin Endocrinol Metab, 90 (2005), pp. 4335-4340
Copyright © 2006. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos