covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Síndrome metabólico, resistencia a la insulina y metabolismo tisular
Información de la revista
Vol. 50. Núm. 8.
Páginas 324-333 (agosto 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 50. Núm. 8.
Páginas 324-333 (agosto 2003)
Acceso a texto completo
Síndrome metabólico, resistencia a la insulina y metabolismo tisular
Metabolic syndrome, insulin resistance and tissue metabolism
Visitas
24532
B.E. Martínez De Morentin, M.C. Rodríguez, J.A. Martínez
Autor para correspondencia
jalfmtz@unav.es

Correspondencia: J. Alfredo Martínez. Departamento de Fisiología y Nutrición. Edificio de Investigación. Universidad de Navarra. Irunlarrea, s/n. 31008 Pamplona. España.
Departamento de Fisiología y Nutrición. Universidad de Navarra. Pamplona. España
Este artículo ha recibido
Información del artículo

El síndrome metabólico recibe una gran atención sanitaria debido al elevado número de personas que lo sufren y que presentan un alto riesgo de padecer diversas complicaciones metabólicas (diabetes mellitus tipo 2, enfermedades cardiovasculares, etc.). Los criterios de diagnóstico, descritos por diferentes comités y organismos, normalmente son: alteración de la regulación de la glucemia, resistencia a la insulina, obesidad abdominal, alteración del metabolismo lipídico e hipertensión arterial. La prevalencia del síndrome metabólico, según el Grupo Europeo para el estudio de la Resistencia a la Insulina, se ha estimado para la población europea caucásica en un 16%. Asimismo, existen varias técnicas para determinar la resistencia a la insulina: técnica del clamp, el modelo mínimo del metabolismo de la glucosa y el test de supresión de la insulina. Por otra parte, el modelo HOMA es un modelo matemático sencillo aplicable a estudios epidemiológicos. Los individuos con este síndrome presentan hiperinsulinismo, lo que determina adaptaciones y alteraciones que afectan al metabolismo de la glucosa y ácidos grasos en diferentes órganos como el tejido adiposo, el hígado y el músculo esquelético.

Palabras clave:
Síndrome metabólico
Resistencia a la insulina
Adipocito
Hígado
Músculo esquelético

The metabolic syndrome (MS) is receiving considerable attention from the health sector, not only because of the number of patients suffering from this disorder, but also because of its association with a number of metabolic disturbances (type 2 diabetes mellitus, cardiovascular diseases, etc.). The diagnostic criteria, defined by various committees and international organizations, are alterations in glucose homeostasis, insulin resistance, abdominal obesity, impaired lipid profile, and hypertension. According to the European Group for the Study of Insulin Resistance, the current prevalence of insulin resistance in European Caucasians is approximately 16%. Several methods have been devised to assess insulin resistance: the clamp technique, the minimal model of glucose metabolism, the insulin suppression test, and homeostasis model assessment, which is based on a mathematical model that can be applied to epidemiological studies. Patients with MS often show signs of hyperinsulinemia, which has metabolic implications affecting glucose and lipid metabolism in various organs such as adipose tissue, liver, and skeletal muscle.

Key words:
Metabolic syndrome
Insulin resistance
Adipocyte
Liver
Skeletal muscle
El Texto completo está disponible en PDF
Bibliografía
[1.]
S. Nilsson.
Research contributions of Eskil Kylin.
Sven Med Tidskr, 5 (2001), pp. 15-28
[2.]
G. Marañón.
La obesidad desde el punto de vista de su pronóstico y tratamiento.
Nuevos problemas de las secreciones internas, pp. 193-231
[3.]
G.M. Reaven.
Role of insulin resistance in human disease.
Diabetes, 37 (1988), pp. 1595-1607
[4.]
J.Q. Purnell, J.D. Brunzell.
The central role of dietary fat not carbohydrate, in the insulin resistance syndrome.
Curr Opin Lipidol, 8 (1997), pp. 17-22
[5.]
G.M. Reaven, Y.D. Chen, J. Jeppesen, P. Maheux, R.M. Krauss.
Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles.
J Clin Invest, 92 (1993), pp. 141-146
[6.]
G.M. Reaven.
Pathophysiology of insulin resistance in human disease.
Physiol Rev, 75 (1995), pp. 473-486
[7.]
G.M. Reaven.
Do high carbohydrate diets prevent the development or attenuate the manifestations or both of syndrome X? A viewpoint strongly against.
Curr Opin Lipidol, 8 (1997), pp. 23-27
[8.]
P.J. Havel.
Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein and adiponectin.
Curr Opin Lipidol, 13 (2002), pp. 51-59
[9.]
K.G. Alberti, P.Z. Zimmet.
Definition, diagnosis and classification of diabetes mellitus and its complications, part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation.
Diabetes Med, 15 (1998), pp. 539-553
[10.]
Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP).
Expert Panel on Detection, Evaluation, and Treatment of High Cholesterol In Adults Human (Adult Treatment Panel III).
JAMA, 285 (2001), pp. 2486-2497
[11.]
Consenso SEED O'2000 para la evaluacion del sobrepeso y la obesidad y el establecimiento de criterios de intervencion terapeutica.
Med Clin, 15 (2000), pp. 587-598
[12.]
B. Larsson, K. Suarsudd, L. Welin, L. Wilheumsen, B.P. Bjortorp, G. Tibblin, et al.
Abdominal adipose tissue distribution obesity and of cardiovascular disease and death: 13 year follow-up of participants in the study of men born in 1913.
Br Med J, 288 (1984), pp. 1401-1404
[13.]
J.P. Despres, A. Pascot, J. Lemieux.
Risk factors associated with obesity: a metabolic perspective.
Ann Endocrinol, 6 (2000), pp. 31-38
[14.]
M. Garaulet, F. Perez-Llamas, S. Zamora, F.J. Tebar.
Interrelationship between serum lipid profile, serum hormones and other components of the metabolic syndrome.
J Physiol Biochem, 58 (2002), pp. 151-160
[15.]
American Association of Clinical Endocrinologists. Code for Dysmetabolic Syndrome X. Disponible en: www.aace.com
[16.]
H.M. Lakka, D.E. Laaksonen, T.A. Lakka, L.K. Niskanen, E. Kumpusalo, V. Tuomilento.
The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.
JAMA, 288 (2002), pp. 1709-2716
[17.]
M. Serrano Rios.
The Metabolic Syndrome in Spain. El sindrome metabolico en su 80 aniversario. Actas 2.o Simposio cientifico.
Madrid, (2002),
[18.]
Grupo de Trabajo Resistencia a la insulina de la Sociedad Espanola de Diabetes tipo 2.
Resistencia a la insulina y su implicacion en multiples factores de riesgo asociados a diabetes tipo 2.
Med Clin (Barc), 119 (2002), pp. 458-463
[19.]
H.P. Himswort.
Diabetes mellitus: its differentiation into insulinsensitive and insulin-insensitive types.
Lancet, 1 (1936), pp. 127-134
[20.]
D. Rabinowitz, K.L. Zierler.
Forearm metabolism in obesity and its response to intra-arterial insulin. Evidence for adaptive hyperinsulinismus.
Lancet, 2 (1961), pp. 690-692
[21.]
G.H. Reaven, Y.D.I. Chen.
Role of insulin in regulation of lipoprotein metabolism in diabetes.
Diab Metabol Rev, 4 (1988), pp. 639-652
[22.]
R.A. De Fronzo, E. Ferrannini.
Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease.
Diabetes Care, 14 (1999), pp. 173-194
[23.]
M.W. Brands, J.E. Hall, H.L. Keen.
Is insulin resistance linked to hypertension?.
Clin Exp Pharmacol Physiol, 25 (1998), pp. 70-76
[24.]
J.S. Yudkin, M. May, P. Elwood, J.W.G. Yarnell, R. Greenwood, Smith. Davey.
Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin: prospective data from the Caerphilly Study.
Diabetologia, 45 (2002), pp. 327-336
[25.]
R.A. De Fronzo, J.D. Tobin, R. Andres.
Glucose clamp technique: a method for quantifying insulin secretion and resistance.
Am J Physiol, 237 (1979), pp. 214-223
[26.]
R.N. Bergman, Y.Z. Ider, C.R. Bowden, C. Cobelli.
Quantitative estimation of insulin sensitivity.
Am J Physiol, 23 (1979), pp. 8667-8677
[27.]
Y. Harano, S. Ohgaku, H. Hidaka, K. Haneda, R. Kikkawa, Y. Shigela, et al.
Glucose insulin and somatostatin infusions for measurement of in vivo insulin resistance.
J Clin Endocrinol Metab, 45 (1977), pp. 1124-1127
[28.]
E. Bonora, P. Moghetti, C. Zancanaro, M. Cigolini, M. Querena, V. Cacciarori, et al.
Estimates in vivo insulin action in man: comparation of insulin tolerance test with euglycemic and hyperglicemic glucose clamp studies.
J Clin Endocrinol Metab, 68 (1989), pp. 374-378
[29.]
D.R. Matthews, J.P. Hossker, A.S. Rudenski, B.A. Naylor, D.F. Teacher, R.C. Turner.
Homeostasis model assessment: insulin resistance and B cell function from fatting plasma and insulin concentration in man.
Diabetologia, 28 (1985), pp. 412-449
[30.]
J.P. Hosker, D.R. Matthews, A.S. Rudenski, M.A. Bumett, P. Darling, E.G. Brorwn, et al.
Continuous infusion of glucose with model assessment: measurement in insulin resistance and β-cell function in man.
Diabetologia, 28 (1985), pp. 401-411
[31.]
C. Fernandez-Mejia.
Nuevo panorama para el entendimiento de los vinculos moleculares entre la obesidad y la diabetes tipo 2.
Rev Invest Clin, 53 (2001), pp. 209-211
[32.]
M.J. Moreno, J.A. Martinez.
El tejido adiposo: organo de almacenamiento y organo secretor.
Anales Del Sist San Nav, 25 (2002), pp. 29-39
[33.]
A.D. Sniderman, K. Cianflone, L.K.M. Summers, B.A. Fielding, K.N. Frayn.
The acylation. stimulating protein pathway and regulation of postprandial metabolism.
Nutr Soc, 56 (1997), pp. 703-712
[34.]
J.M. Ong, P.A. Kern.
Effect of feeding and obesity on lipoprotein lipase activity, immunoreactive protein, and messenger RNA levels in human adipose tissue.
Clin Inves, 84 (1989), pp. 305-311
[35.]
S.W. Coppack, R.D. Evans, R.M. Fisher, K.N. Frayn, G.F. Gibbons, T.D.R. Hockaday, et al.
Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal.
Metabolism, 41 (1992), pp. 264-272
[36.]
J.S. Flier.
Diabetes: The missing link with obesity?.
Nature, 409 (2001), pp. 292-293
[37.]
E. Ferrannini, E.J. Barrett, S. Bevilacqua, R.A. DeFronzo.
Effect of fatty acids on glucose production and utilization in man.
Journal of Clinical Investigation, 72 (1983), pp. 1737-1747
[38.]
G. Boden, X. Chen, J. Ruiz, J.V. White, L. Rossetti.
Mechanisms of fatty acid-induced inhibition of glucose uptake.
J Clin Invest, 93 (1994), pp. 2438-2446
[39.]
R.H. Unger.
Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications.
Diabetes, 44 (1995), pp. 863-870
[40.]
V. Grill, E. Qvigstad.
Fatty acids and insulin secretion.
Br J Nutr, 83 (2000), pp. 79-84
[41.]
L.J. Old.
Tumor necrosis factor (TNF).
Science, 230 (1985), pp. 630-632
[42.]
M. Bullo Bonet, P. Garcia-Lord, J.M. Argiles, J. Salas-Salvado.
Papel del factor de necrosis tumoral en el control de las reservas grasas y la obesidad.
Med Clin (Barc), 114 (2000), pp. 624-630
[43.]
P.A. Kern, M. Saghidazdeh, J.M. Ong, R.J. Bosch, R. Deem, R.B. Simsolo.
The expression of tumor necrosis factor in human adipose tissue: regulation by obesity, weight loss: and relationship to lipoprotein lipase.
J Clin Invest, 95 (1995), pp. 2111-2119
[44.]
M. Saghidazdeh, J.M. Ong, W.T. Garvey, R.R. Henry, P.A. Kern.
The expression of TNF-α by human muscle: relationship to insulin resistance.
J Clin Invest, 97 (1996), pp. 1111-1116
[45.]
G.S. Hotamisligil, B.M. Spiegelman.
Tumor necrosis factor alpha: a key component of the obesity-diabetes link.
Diabetes, 43 (1994), pp. 1271-1278
[46.]
G.S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M.F. White, B.M. Spiegelman.
IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF and obesity induced insulin resistance.
Science, 271 (1996), pp. 665-668
[47.]
F. Ofei, S. Hurel, J. Newkirk, M. Sopwith, R. Taylor.
Effects of an engineered human anti-TNF a antibody (CDPS71) on insulin sensitivity and glycemic control in patients with NIDDM.
Diabetes, 45 (1996), pp. 881-885
[48.]
V. Mohamed-Ali, S. Goodrick, A. Rawesh, J.M. Miles, J.S. Yudkin, S.W. Coppack, et al.
Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo.
J Clin Endocrinol Metab, 82 (1997), pp. 4196-4200
[49.]
H.A. Koistinen, J.P. Bastard, E. Dusserre, P. Ebeling, N. Zegari, H. Vidal, et al.
Subcutaneous adipose tissue expression of tumor necrosis factor-alpha is not associated with whole body insulin resistance in obese nondiabetic or in type-2 diabetic subjects.
Eur J Clin Invest, 30 (2000), pp. 302-310
[50.]
N. Ouchi, G. Aichaud, R. Negrel.
Novel modulator for endothelial adhesion molecular. Adipocyte-derived plasma protein adiponectin.
Circulation, 100 (1999), pp. 2473-2476
[51.]
Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, Y. Matsuzawa.
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
Biochem Biophys Res Commun, 257 (1999), pp. 79-83
[52.]
K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto Matsuzawa.
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 1595-1599
[53.]
C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, P.A. Tataranni.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin.
Endocrinol Metab, 86 (2001), pp. 1930-1935
[54.]
T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota, T. Kadowaki.
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.
Nat Med, 7 (2001), pp. 941-946
[55.]
A.H. Berg, T.P. Combs, X. Du, M. Brownlee, P.E. Scherer.
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.
Nat Med, 7 (2001), pp. 947-953
[56.]
N. Maeda, M. Takahashi, T. Funahashi, S. Kihara, H. Nishizawa, Y. Matsuzawa.
PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.
Diabetes, 50 (2001), pp. 2094-2099
[57.]
A.H. Berg, T.P. Combs, P.E. Scherer.
ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.
Trends Endocrinol Metab, 13 (2002), pp. 84-89
[58.]
C.M. Steppan, S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, et al.
The hormone resistin links obesity to diabetes.
Nature, 409 (2001), pp. 307-312
[59.]
P.G. Mcternan.
Increased resistin gene and protein expression in human abdominal adipose tissue.
J.Clin Endocrinol Metab, 87 (2002), pp. 2407-2410
[60.]
J.A. Martinez, J. Margareto, A. Marti, F.I. Milagro.
Resistin overexpression is induced by a β3 adrenergic agonist in diet-related overweightness.
J Physiol Biochem, 57 (2001), pp. 287-288
[61.]
J.M. Way, C.Z. Gorgun, Q. Tong, K. Uysal, K.K. Brown, W.W. Harrington, et al.
Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisoma proliferator. activated receptor gamma agonists.
J Biol Chem, 276 (2001), pp. 25651-25653
[62.]
Y. Zhang, R. Proenca, N. Maffei, M. Barone, L. Leopold, J.M. Friedman.
Positional cloning of the mouse and its human homologue.
Nature, 372 (1994), pp. 425-432
[63.]
C. Mantzoros.
The role of leptin in human obesity and disease. A review of current evidence.
Ann Intern Med, 130 (1999), pp. 671-680
[64.]
S. Dagogo-Jack.
Regulation and possible significance of leptin in humans: leptin in health and disease.
Diabetes Rev, 7 (1999), pp. 23-37
[65.]
M. Wauters, M. Considine, L. Van Gaal.
Human leptin: from an adipocyte hormone to an endocrine mediator.
Eur J Endocrinol, 143 (2000), pp. 293-311
[66.]
M.K. Sinha, I. Opentanova, J.P. Ohannesian, J.W. Kolaazynsiki, M.L. Heiman, J.F. Cano.
Evidence of free and bound leptin in human circulation: studies in lean and obese subjects and during short term fasting.
J Clin Invest, 98 (1996), pp. 1277-1282
[67.]
W. Haynes, W. Sivitz, D. Morgan, S. Walsh, A. Mark.
Sympathetic and cardiorenal actions of leptin.
Hypertension, 30 (1997), pp. 619-623
[68.]
G. Fruhbeck.
Peripheral actions of leptin and its involvement in disease.
Nutr Rev, 60 (2002), pp. 47-55
[69.]
F. Lonqvist, L. Nordfors, M. Schalling.
Leptin and its potential role in human obesity.
J Intern Med, 245 (1999), pp. 643-652
[70.]
J. Friedman, J. Halaas.
Leptin and regulation of body weight in mammals.
Nature, 395 (1998), pp. 763-769
[71.]
R.B. Ceddia, H.A. Koistinen, J.R. Zierath, G. Sweeney.
Analysis of paradoxical observations on the association between leptin and insulin resistance.
FASEB J, 16 (2002), pp. 1163-1176
[72.]
X. Garcia-Moll, J.C. Kaski.
Cardiopatia isquemica: marcadores de inflamacion y riesgo cardiovascular.
Rev Esp Cardiol, 52 (1999), pp. 990-1003
[73.]
E.C. Gotschlich.
C-reactive protein. A historical overwiew.
Ann N Y Acad Sci, 557 (1989), pp. 9-18
[74.]
A. Festa, R. D'Agostino, G. Howard, L. Mykkanen, P.T. Russell, S. Haffner.
Chronic subclinical inflammation as part of the Insulin Resistance Atherosclerosis Study (IRAS).
Circulation, 102 (2000), pp. 42
[75.]
N. Pannacciulli, F.P. Cantatore, A. Minenna, M. Bellacicco, R. Giorgino, G. De Pergola.
C-reactive protein is independently associated with total body fat central fat and insulin resistance in adult women.
Int J Obes, 2 (2001), pp. 1416-1420
[76.]
P.M. Ridker, N. Rifai, L. Rose, J.E. Buring, N.R. Cook.
Comparison of C-Reactive Protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events.
N Engl J Med, 347 (2002), pp. 1557-1565
[77.]
T.A. Person, G.A. Mensah.
Markers of inflammation and cardiovascular disease.
Circulation, 107 (2003), pp. 499-511
[78.]
J. Chmielewska, M. Ranby, B. Wiman.
Evidence for the occurrence of a fast acting inhibitor for tissue type plasminogen activator in plasma.
Thromb Res, 31 (1983), pp. 427-436
[79.]
I. Shimomura, T. Funahashi, M. Takahashi, K. Maeda, K. Kotani, T. Nakamura, et al.
Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity.
Nat Med, 2 (1996), pp. 800-803
[80.]
M.C. Alessi, F. Peiretti, P. Morange, M. Henry, G. Nalbone, I. Juhan-Vague.
Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease.
Diabetes, 46 (1997), pp. 860-867
[81.]
B. Janand-Delenne, C. Chagnaud, D. Raccah, M.C. Alessi, I. Juhan-Vague, P. Vague.
Visceral fat as a main determinant of plasminogen activator inhibitor 1 level in women.
Int J Obes, 22 (1998), pp. 312-317
[82.]
J.P. Bastard, L. Pieroni, B. Hainque.
Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance.
Diab Metab Rev, 16 (2000), pp. 192-201
[83.]
J. Orbe, A. Martin Trenor, G. Rabago, M. Belzunce, C. Roncal, J.A. Paramo.
Reduccion del potencial fibrinolitico relacionado con aumento de la expresion de PAI-1 vascular en injertos aorto-coronarios.
Haematologica (ed. esp.), 85 (2000), pp. 136
[84.]
Devaraj Sridevi, X.u. Dan Yan, Jialal. Ishwarlala.
C-reactive Protein Increases Plasminogen Activator Inhibitor-1 expression and Activity in Human Aortic Endothelial Cells. Implications for the Metabolic Syndrome and Atherothombosis.
Circulation, 107 (2003), pp. 1-7
[85.]
J.O. Westwater, D. Fainer.
Liver impairment in the obese.
Gastroenterology, 34 (1958), pp. 686-693
[86.]
J.M. Clark, F.L. Brancati, A.M. Diehl.
Nonalcoholic fatty liver disease.
Gastroenterology, 122 (2002), pp. 1649-1657
[87.]
I.R. Wanless, J.S. Lentz.
Fatty liver hepatitis (steathepatitis) and obesity: An autopsy study with analysis of risk factors.
Hepatology, 12 (1990), pp. 1106-1110
[88.]
R.A. De Fronzo.
Ferranini. Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hipertension, dyslipidemia and atherosclerotic cardiovascular disease.
Diabetes Care, 14 (1991), pp. 173-194
[89.]
G. Marchesini, M. Brizi, A.H. Morsellio-Labate, G. Bianchi, E. Burgianesi, A.S. McCullough, et al.
Association of nonalco-holic fatty liver disease with insulin resistance.
Am J Med, 107 (1999), pp. 450-455
[90.]
A.J. Sanyal, C. Campbell-Sangert, F. Mirshahi, W.B. Rizzo, M.J. Contos, R.K. Sterling, et al.
Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities.
Gastroenterology, 120 (2001), pp. 1183-1192
[91.]
G. Pagano, G. Pacini, G. Musso, R. Gambino, F. Mecca, N. Depretis, et al.
Non-alcoholic steatohepatitis, insulin resistance and metabolic syndrome: Further evidence for an etiologic association.
Hepatology, 35 (2002), pp. 367-372
[92.]
S. Chitturi, S. Abeygunasekera, G.C. Farrell, J. Holmes-Walker, J.M. Hui, C. Fung, et al.
Nash and insulin resistance: Insulin hypersecretion and specific association with insulin resistance syndrome.
Hepatology, 35 (2002), pp. 373-379
[93.]
G. Marchesini, M. Brizi, G. Bianchi, S. Tomassetti, E. Burgianesi, M. Lenzi, et al.
Nonalcoholic fatty liver disease. A feature of the metabolic syndrome.
Diabetes, 50 (2001), pp. 1844-1850
[94.]
S. Yamashita, T. Nakamura, I. Shimomura, M. Nishida, S. Yoshida, K. Kotani, et al.
Insulin resistance and body fat distribution.
Diabetes Care, 19 (1996), pp. 287-291
[95.]
Y. Matsuzawa, I. Shimomura, T. Nakamura, Y. Keno, K. Kotani, K. Tokunaga.
Pathophysiology and pathogenesis of visceral fat obesity.
Obes Res, (1995), pp. 187-194
[96.]
E. Ferrannini, S. Camastra.
Relationship between impaired glucose tolerance, non insulin-dependent diabetes mellitus and obesity.
Eur J Clin Invest, 28 (1998), pp. 3-6
[97.]
E. Bonora.
Relationship between regional fat distribution and insulin resistance.
Int Obes, 24 (2000), pp. 32-35
[98.]
B.A. Neuschwander-Tetri.
A resistance movement in NASH.
Am J Gastroenterol, 96 (2001), pp. 2813-2814
[99.]
I.R. Wanless, J.M. Bergman, D.G. Oreopoulas, S.I. Vas.
Subcapsular steatonecrosis in response to peritoneal insulin delivery: a clue to the pathogenesis of steatonecrosis in obesity.
Mod Pathol, 2 (1989), pp. 69-74
[100.]
J. Sohn, E. Siegelman, A. Osiason.
Unusual patterns of hepatic steatosis caused by the local effect of insulin revealed on chemical shift MR imaging.
Am J Roentgenol, 176 (2001), pp. 471-474
[101.]
G. Marchesini, M. Brizi, A.M. Morselli-Labate, G. Bianchi, E. Bugianesi, N. Melchionda.
Association of nonalcoholic fatty liver disease with insulin resistance.
Am J Medicine, 107 (1999), pp. 450-455
[102.]
R.G. Lee.
Nonalcoholic steatohepatitis: A study of 39 patients.
Hum Pathol, 20 (1989), pp. 594-598
[103.]
E.E. Powell, W.G. Cooksley, R. Hanson, J. Searle, J.W. Halliday, L.W. Powell.
The natural history of nonalcoholic steatohepatitis: A follow-up study of forty-two patients for up to 21 years.
Hepatology, 11 (1990), pp. 74-80
[104.]
V. Ratziu, P. Giral, F. Charlotte, E. Bruckert, V. Thibault, I. Theodoru, et al.
Liver fibrosis in overweight patients.
Gastroenterology, 118 (2000), pp. 1117-1123
[105.]
W.R. Kim, J.J. Poterucha, M.K. Porayko, E.R. Dickson, J.L. Steers, R.H. Wiesner.
Recurrence of nonalcoholic steatohepatitis following liver transplantation.
Transplantation, 62 (1996), pp. 1802-1805
[106.]
S.H. Torres.
Obesity, insulin resistance and skeletal muscle characteristics.
Acta Cient Venez, 50 (1999), pp. 34-41
[107.]
P. Sherpherd, B. Kahn.
Glucose transporters and insulin action. Implications for insulin resistance and diabetes mellitus.
New Engl J Med, 341 (1999), pp. 248-257
[108.]
P.J. Randle.
Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years.
Diab Metabol Rev, 14 (1998), pp. 263-283
[109.]
R. Wolfe.
Metabolic interactions between glucose and fatty acids in human.
Am J Clin Nutr, 67 (1998), pp. 519-526
[110.]
D.E. Kelley, B.H. Goodpaster, L. Storlien.
Muscle trigliceride and insulin resistance.
[111.]
D.E. Kelley.
Skeletal muscle triglyceride. An aspect of regional adipocity and insulin resistance.
Ann N Y Acad Sci, 967 (2002), pp. 135-145
[112.]
J. Divisova, L. Kazdova, M. Hudova, E. Meschisvili.
Relationship between insulin resistance and muscle triglyceride content in non-obese experimental models of insulin resistance syndrome.
Ann N Y Acad Sci, 967 (2002), pp. 440-445
[113.]
D.E. Kelley, B.H. Goodpaster.
Skeletal muscle triglyceride: an aspect of regional adiposity and insulin resistance.
Diabetes Care, 24 (2001), pp. 933-941
Copyright © 2003. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos