metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Lectura interpretada del antibiograma de cocos grampositivos
Información de la revista
Vol. 20. Núm. 7.
Páginas 354-364 (agosto 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 20. Núm. 7.
Páginas 354-364 (agosto 2002)
Acceso a texto completo
Lectura interpretada del antibiograma de cocos grampositivos
Interpretative reading of the antibiogram in gram-positive cocci
Visitas
16264
Carmen Torres1
Autor para correspondencia
carmen.torres@daa.unirioja.es

Correspondencia: Dra. C. Torres. Área de Bioquímica y Biología Molecular. Universidad de La Rioja. Madre de Dios, 51. 26006 Logroño. España.
Área de Bioquímica y Biología Molecular. Universidad de La Rioja. Logroño. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

El mecanismo de resistencia a betalactámicos más importante en Staphylococcus es la resistencia a meticilina, relacionada con el gen mecA, que implica resistencia a todos los betalactámicos. Los puntos de corte para interpretación de este mecanismo varían de S. aureus a las especies coagulasa negativa. En cuanto a macrólidos-lincosamidas-estreptograminas B, lo más habitual entre las cepas resistentes es la expresión de metilasas (genes erm). Las alteraciones en las topoisomerasas por mutaciones puntuales y la expresión de la bomba de expulsión NorA causan resistencia a quinolonas, pero hay notables diferencias sobre la actividad de diferentes compuestos, lo cual dificulta el análisis interpretado. Recientemente se han descrito cepas de S. aureus con sensibilidad intermedia a glucopéptidos (cepas GISA). En España existe un elevado porcentaje de cepas de S. pneumoniae intermedias o resistentes a penicilina y un bajo porcentaje de cepas intermedias o resistentes a cefalosporinas de tercera generación, por alteraciones en los genes que codifican proteínas fijadoras de penicilinas. El fenotipo de resistencia más frecuente en esta especie para macrólidos-lincosamidas-estreptograminas B es también la producción de metilasas. La resistencia a quinolonas, aún poco frecuente, se relaciona con los mecanismos antes indicados para Staphylococcus, pero la interpretación clínica de los resultados es aún más compleja. No se han descrito aún cepas de S. pyogenes resistentes a penicilina. En España, el fenotipo de resistencia a macrólidos en S. pyogenes más frecuente está causado por bombas de expulsión activa (genes mef) que afectan a macrólidos de 14 y 15 átomos. Enterococcus faecalis suele ser sensible a ampicilina, a diferencia de lo observado en E. faecium. Los enterococos tienen resistencia intrínseca a aminoglucósidos, pero son sensibles a la combinación de estos compuestos con agentes activos en la pared. Las cepas que expresan distintas enzimas modificantes de aminoglucósidos se hacen resistentes también a la citada combinación. En España son raras las cepas de enterococo resistentes a glucopéptidos, pero en otras regiones se han descrito diferentes fenotipos de los que el más relevante es vanA.

Palabras clave:
Staphylococcus
Streptococcus
Enterococcus
Antibiograma

Resistance to methicillin in Staphylococcus is related to expression of the gene mecA, and implies resistance to all beta-lactams. Breakpoints for interpretation of this mechanism differ in S. aureus and in coagulase-negative species. In relation to macrolides-lincosamides-streptograminsB, the most frequent mechanism among resistant strains is expression of methylases (erm genes). Topoisomerase changes caused by point mutations and expression of the efflux pump NorA determine resistance to quinolones, but there are great differences on the activity of different compounds, which makes interpretative reading difficult. Strains of S. aureus with intermediate susceptibility to glycopeptides (GISA strains) have been recently described. In Spain, there is a high percentage of S. pneumoniae strains intermediate or resistant to penicillin, and a low percentage of strains intermediate or resistant to third generation cephalosporins, because of mutations in genes encoding penicillin-binding proteins. The most frequent phenotype of resistance to macrolides in this species is caused by methylase production. Resistance to quinolones is still uncommon, and is related to the mechanisms previously indicated for Staphylococcus, but clinical interpretation of the antibiograma for this organism is even more complex. No strains of S. pyogenes resistant to penicillin have yet been described. In Spain the most common phenotype of resistance to macrolides in S. pyogenes is determined by efflux pumps (mef genes), affecting 14- and 15-membered macrolides. E. faecalis is usually susceptible to ampicillin, in contrast to E. faecium. Enterococci show intrinsic resistance to aminoglycosides, but still remain susceptible to the combination of these antimicrobials and cell-wall active agents. Strains expressing different aminoglycoside-modifying enzymes became resistant to the combination.

Glycopeptide-resistant strains of enterococci are uncommon in our country, but several genotypes, of which vanA is the most relevant from a clinical point of view, have been described in other regions.

Keywords:
Staphylococcus
Streptococcus
Enterococcus
Antibiogram
El Texto completo está disponible en PDF
Bibliografía
[1.]
National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 4.a ed. Wayne: Approved Standard M7-A5. NCCLS, 2002
[2.]
Recomendaciones del grupo MENSURA para la selección de antimicrobianos en el estudio de la sensibilidad y criterios para la interpretación del antibiograma. Mesa Española de Normalización de la Sensibilidad y Resistencia a los Antimicrobianos (MENSURA).
Rev Esp Quimioter, 13 (2000), pp. 73-86
[3.]
A. Tomasz, S. Nachman, H. Leaf.
Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci.
Antimicrob Agents Chemother, 35 (1991), pp. 124-129
[4.]
H. De Lencastre, A.M. Sa Figueiredo, C. Urban, J. Rahal, A. Tomasz.
Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus.
Antimicrob Agents Chemother, 35 (1991), pp. 632-639
[5.]
J.E. Finan, A.E. Rosato, T.M. Dickinson, D. Ko, G.L. Archer.
Conversion of oxacillin-resistance staphylococci from heterotypic to homotypic resistance expression.
Antimicrob Agents Chemother, 46 (2002), pp. 24-30
[6.]
C.L. McDonald, W.E. Maher, R.J. Faa.
Revised interpretation of oxacillin MICs for Staphylococcus epidermidis based on mecA detection.
Antimicrob Agents Chemother, 39 (1995), pp. 982-984
[7.]
B. Weisblum, et al.
Resistance to the macrolide-lincosamide-streptogramins antibiotics.
[8.]
M. Matsuoka, M. Inoue, Y. Nakajima, Y. Endo.
New erm gene in Staphylococcus aureus clinical isolates.
Antimicrob Agents Chemother, 46 (2002), pp. 211-215
[9.]
F.J. Schmitz, B. Hofmann, B. Hansen, S. Scheuring, M. Luckefahr, M. Klootwijk, et al.
Relationship between ciprofloxacin, ofloxacin, levofloxacin, sparfloxacin and moxifloxacin (BAY 12-8039) MICs and mutations in grlA, grlB, gyrA and gyrB in 116 unrelated clinical isolates of Staphylococcus aureus.
J Antimicrob Chemother, 41 (1998), pp. 481-484
[10.]
D.C. Hooper.
Emerging mechanisms of fluoroquinolone resistance.
Emerg Infect Dis, 7 (2001), pp. 337-341
[11.]
K. Hiramatsu, N. Aritaka, H. Hanaki, S. Kawasaki, Y. Hosoda, S. Hori, et al.
Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin.
Lancet, 350 (1997), pp. 1670-1673
[12.]
J. Ariza, M. Pujol, J. Cabo, C. Pena, N. Fernandez, J. Linares, et al.
Vancomycin in surgical infections due to methicillin-resistant Staphylococcus aureus with heterogeneous resistance to vancomycin.
Lancet, 353 (1999), pp. 1587-1588
[13.]
J. Liñares.
The VISA/GISA problem: Therapeutic implications.
Clin Microbiol Infect, 4 (2001), pp. 8-15
[14.]
S. Boyle-Vavra, S.K. Berke, J.C. Lee, R.S. Daum.
Reversion of the glycopeptide resistance phenotype in Staphylococcus aureus clinical isolates.
Antimicrob Agents Chemother, 44 (2000), pp. 272-277
[15.]
A.M. Smith, K.P. Klugman, T.J. Coffey, B.G. Spratt.
Genetic diversity of penicillin-binding protein 2B and 2X genes from Streptococcus pneumoniae in South Africa.
Antimicrob Agents Chemother, 37 (1993), pp. 1938-1944
[16.]
E. Perez-Trallero, C. Fernandez-Mazarrasa, C. Garcia-Rey, E. Bouza, L. Aguilar, J. García de Lomas, et al.
The Spanish surveillance group for respiratory pathogens. Antimicrobial susceptibility of 1684 Streptococcus pneumoniae and 2039 Streptococcus pyogenes isolates and their ecological relationship. Results of a 1-year (1998-1999) multicenter surveillance study in Spain.
Antimicrob Agents Chemother, 45 (2001), pp. 3334-3340
[17.]
A. Fenoll, I. Jado, D. Vicioso, A. Perez, J. Casal.
Evolution of Streptococcus pneumoniae serotypes and antibiotic resistance in Spain: update (1990 to 1996.
J Clin Microbiol, 36 (1998), pp. 3447-3454
[18.]
G.V. Doern, K.P. Heilmann, H.K. Huynh, P.R. Rhomberg, S.L. Coffman, A.B. Brueggemann.
Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999-2000, including a comparison of resistance rates since 1994-1995.
Antimicrob Agents Chemother, 45 (2001), pp. 1721-1729
[19.]
M.E. Jones, D.F. Sahm, N. Martin, S. Scheuring, P. Heisig, C. Thornsberry, et al.
Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different during the 1997-1998 respiratory season.
Antimicrob Agents Chemother, 44 (2000), pp. 462-466
[20.]
J.I. Alos, B. Aracil, J. Oteo, C. Torres, J.L. Gomez-Garces.
The Spanish group for the study of infection in the primary health care setting.
J Antimicrob Chemother, 45 (2000), pp. 605-609
[21.]
A. Portillo, M. Lantero, I. Olarte, F. Ruiz-Larrea, C. Torres.
MLS resistance phenotypes in β-haemolytic group B, C and G Streptococcus isolates in La Rioja, Spain.
J Antimicrob Chemother, 47 (2001), pp. 115-116
[22.]
Galimand M, Lambert T, Gerbaud G, Courvalin P. High-level aminoglycoside resistance in the beta-hemolytic group B Streptococcus isolate BM2721. Antimicrob Agents Chemother 43:3008-10.
[23.]
C. Torres, C. Tenorio, M. Lantero, M.J. Gastañares, F. Baquero.
High-level penicillin resistance and penicillin-gentamicin synergy in Enterococcus faecium.
Antimicrob Agents Chemoter, 37 (1993), pp. 2427-2431
[24.]
E. Cercenado, M.E. Garcia-Leoni, P. Rodeño, M. Rodriguez-Creixems.
Ampicillin-resistant enterococci.
Antimicrob Agents Chemother, 28 (1990), pp. 829
[25.]
J.F. Tomayko, K.K. Zscheck, K.V. Singh, B.E. Murray.
Comparison of the beta-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis.
Antimicrob Agents Chemother, 40 (1996), pp. 1170-1174
[26.]
P.E. Coudron, S.M. Markowitz, E.S. Wong.
Isolation of a beta-lactamase producing strain of Enterococcus faecium.
Antimicrob Agents Chemother, 36 (1992), pp. 1125-1126
[27.]
A. Portillo, F. Ruiz-Larrea, M. Zarazaga, A. Alonso, J.L. Martinez, C. Torres.
Macrolide resistance genes in Enterococcus spp.
Antimicrob Agents Chemother, 44 (2000), pp. 967-971
[28.]
N. Kobayashi, M. Alam, Y. Nishimoto, S. Urasawa, N. Uehara, N. Watanabe.
Distribution of aminoglycoside resistance genes in recent clinical isolates of Enterococcus faecalis, Enterococcus faecium and Enterococcus avium.
Epidemiol Infect, 126 (2001), pp. 197-204
[29.]
R. Del Campo, C. Tenorio, C. Rubio, J. Castillo, C. Torres, R. Gómez-Lus.
Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain.
Intern J Antimicrob Agents, 15 (2000), pp. 221-226
[30.]
J.W. Chow.
Aminoglycoside resistance in enterococci.
Clin Infect Dis, 31 (2001), pp. 586-589
[31.]
J.W. Chow, M.J. Zervos, S.A. Lerner, L.A. Thal, S.M. Donabedian, D.D. Jaworski, et al.
A novel gentamicin resistance gene in Enterococcus.
Antimicrob Agents Chemother, 41 (1997), pp. 511-514
[32.]
S.J. Kao, I. You, D.B. Clewell, S.M. Donabedian, M.J. Zervos, J. Petrin, et al.
Detection of the high-level aminoglycoside resistance gene aph(2__)-Ib in Enterococcus faecium.
Antimicrob Agents Chemother, 44 (2000), pp. 2876-2879
[33.]
S.F. Tsai, M.J. Zervos, D.B. Clewell, S.M. Donabedian, D.F. Sahm, J.W. Chow.
A new high-level gentamicin resistance gene, aph(2″)-Id, in Enterococcus spp.
Antimicrob Agents Chemother, 42 (1998), pp. 1229-1232
[34.]
B.E. Murray.
Vancomycin-resistant enterococcal infections.
N Engl J Med, 342 (2000), pp. 710-721
[35.]
P. Vandamme, E. Vercauteren, C. Lammens, M. Pensart, M. Ieven, B. Pot, et al.
Survey of enterococcal susceptibility pattern in Belgium.
J Clin Microbiol, 34 (1996), pp. 2572-2576
[36.]
Robredo B, Singh KV, Baquero F, Murray B, Torres C. Vancomycin-resistant enterococci isolated from animals and food. Int J Food
Copyright © 2002. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos