metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Resistencias a darunavir
Información de la revista
Vol. 26. Núm. S10.
Darunavir
Páginas 51-60 (octubre 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S10.
Darunavir
Páginas 51-60 (octubre 2008)
Acceso a texto completo
Resistencias a darunavir
Resistance to darunavir
Visitas
3713
Miguel García Deltoro
Autor para correspondencia
med001007@saludalia.com

Correspondencia: Unidad de Enfermedades Infecciosas. Consorcio Hospital General Universitario. Avda. Tres Cruces, s/n. 46014 Valencia. España.
Unidad de Enfermedades Infecciosas. Consorcio Hospital General Universitario. Valencia. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

El perfil de resistencia a darunavir (DRV) se ha extrapolado inicialmente del análisis combinado de los 3 estudios POWER del subgrupo que llevaba desde el comienzo la dosis aprobada para DRV (n = 467) y, posteriormente, ampliado con la rama placebo sin etravirina de los 2 estudios DUET (n = 604), midiendo la eficacia a las 24 semanas. Se han configurado como los 2 mejores factores predictivos de la respuesta virológica: por una parte, el fenotipo basal expresado como el aumento del número de veces o fold change (FC) en la concentración eficaz del 50% (EC50), describiéndose 2 puntos de corte clínicos en 10 y 40 como disminución y pérdida de respuesta respectivamente; por otra, un primer listado (DRV score 2006) de 11 mutaciones en 10 posiciones: V11I, V32I, L33F, I47V, I50V, I54L, I54M, G73S, L76V, I84V y L89V, recientemente revisado (DRV score 2007) quitando del anterior la G73S y añadiendo la T74P, y la respuesta virológica está disminuida con la presencia de 3 o más mutaciones de ambos listados con una ligera mejora de la predicción de respuesta para el de 2007, siempre en el contexto de un alto número de mutaciones (mediana ≥ 10) de la International AIDS Society, además hay una muy buena correlación genofenotípica comprobando una disminución progresiva del FC con el acúmulo paulatino de mutaciones de ambos listados. En cuanto a las mutaciones seleccionadas al fallo a DRV, en los pacientes multirresistentes de los estudios POWER y DUET se describen también mayoritariamente las del DRV score sobre todo la pareja V32I e I54L; comparativamente los pacientes del estudio TITAN con un menor nivel de resistencia seleccionan mutaciones similares pero de manera muy escasa en los pocos fallos virológicos descritos, muchos menos fallos y menos mutaciones que la rama de lopinavir (LPV); por último, no aparece ninguna mutación en la proteasa de fracasos a DRV en pacientes naïve (estudio ARTEMIS), efecto ya conocido del grupo de inhibidores de la proteasa potenciados, pero también más acentuado para DRV frente a LPV.

Palabras clave:
Darunavir
Resistencia
Fenotipo basal
Listado de mutaciones 2006 y 2007

The resistance profile of darunavir (DRV) was initially explored using pooled week 24 data from POWER 1, 2, and 3 at the recommended dose of DRV (n=467) with the subsequent addition of data from the placebo arm without etravirine (ETR) of DUET 1 and 2 (n=604). The two strongest predictors of virological response were firstly baseline phenotype expressed as the darunavir fold change in 50% effective concentration (EC50), with phenotypic clinical cut-offs of 10 and 40 being established for diminished response and loss of response, respectively, and secondly, the DRV score 2006 of 11 mutations in 10 positions: V11I, V32I, L33F, I47V, I50V, I54L, I54M, G73S, L76V, I84V and L89V, recently revised (DRV score 2007) with removal of G73S and addition of T74P. The presence of three or more mutations was associated with a diminished virological response in both the 2006 and 2007 lists but slightly better prediction was observed with the 2007 list. Each of the above-mentioned mutations was associated with a mean of at least 10 mutations of the International AIDS Society's (IAS) list. Moreover, good genophenotypic correlation was found, corroborating a progressive reduction in fold change with the progressive accumulation of mutations from both lists. In multiresistant patients in the POWER and DUET studies, the most commonly selected mutations upon DRV failure were those in the DRV score, especially V32I and I54L. Similar mutations were selected by patients from TITAN, who showed a much lower level of resistance; however, these mutations were selected much less frequently in the few virological failures described. Furthermore, virological failure and mutations were much less frequent in the DRV arm than in the lopinavir arm. Lastly, no protease mutations were found upon DRV failure in treatment-naive patients in the ARTEMIS study, an effect already known in enhanced proteases, but also more accentuated in DRV than in lopinavir.

Key words:
Darunavir
Resistance
Baseline phenotype
DRV scores 2006 and 2007
El Texto completo está disponible en PDF
Bibliografía
[1.]
N.M. King, M. Prabu-Jeyabalan, E.A. Nalivaika, P. Wigerinck, M.P. De Béthune, C.A. Schiffer.
Structural and thermodynamic basis for the binding of TMC114, a next-generation HIV type 1 protease inhibitor.
J Virol, 78 (2004), pp. 2012-2021
[2.]
Y. Tie, P.I. Boross, Y.F. Wang, L. Gaddis, A.K. Hussain, S. Leshchenko, et al.
High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains.
J Mol Biol, 338 (2004), pp. 341-352
[3.]
R. Kantor, J. Fessel, A.R. Zolopa, D. Israelski, N. Shulman, J.G. Montoya, et al.
Evolution of primary protease inhibitor resistance mutations during protease inhibitor salvage therapy.
Antimicrob Agents Chemother, 46 (2002), pp. 1086-1092
[4.]
C. Delaugerre, D. Mathez, G. Peytavin, H. Berthé, K. Long, T. Galperine, et al.
Key amprenavir resistance mutations counteract dramatic efficacy of darunavir in highly experienced patients.
[5.]
S. De Meyer, K. Cao-Van, E. Lathouwers, T. Vangeneugden, M.P. De Béthune.
Phenotypic and genotypic profiling of TMC114, lopinavir and tipranavir against PI-resistant HIV-1 clinical isolates.
4th European HIV Drug Resistance Workshop,
[6.]
J.V. Madruga, D. Berger, M. McMurchie, F. Suter, D. Banhegyi, K. Ruxrungtham, et al.
Efficacy and safety of darunavir-ritonavir compared with that of lopinavir- ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial.
[7.]
R. Ortiz, E. DeJesus, H. Khanlou, E. Voronin, J. Van Lunzen, J. Andrade-Villanueva, et al.
Efficacy and safety of darunavir/ritonavir versus lopinavir/ritonavir in treatment-naive HIV-1 infected patients at week 48.
[8.]
S. De Meyer, T. Vangeneugden, B. Van Baelen, E. De Paepe, H. Van Marck, G. Picchio, et al.
Resistance Profile of Darunavir: Combined 24-Week Results from the POWER Trials.
AIDS Res Hum Retroviruses, 24 (2008), pp. 379-388
[9.]
C. Katlama, R. Espósito, J.M. Gatell, J.C. Goffard, B. Grinsztejn, A. Pozniak, et al.
Efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients: 24-week results of POWER 1.
[10.]
R. Haubrich, D. Berger, P. Chiliade, A. Colson, M. Conant, J. Gallant, et al.
Week 24 efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients: POWER 2.
[11.]
J.M. Molina, C. Cohen, C. Katlama, B. Grinsztejn, A. Timerman, J. Pedro Rde, et al.
Safety and efficacy of darunavir (TMC114) with low-dose ritonavir in treatment-experienced patients: 24-week results of POWER 3.
J Acquir Immune Defic Syndr, 46 (2007), pp. 24-31
[12.]
S. De Meyer, I. Dierynck, E. Lathouwers, B. Van Baelen, T. Vangeneugden, S. Spinosa-Guzmán, et al.
Identification of mutations predictive of a diminished response to darunavir/ritonavir: analysis of data from treatment-experienced patients in POWER 1, 2, 3 and DUET-1 and DUET-2.
6th European HIV Drug Resistance Workshop,
[13.]
S. De Meyer, H. Azijn, E. Fransen, I. De Baere, M. Van Ginderen, B. Maes, et al.
The pathway leading to TMC 114 resistance is different for TMC114 compared with other protease inhibitors.
15th Internacional Drug Resistance Workshop,
[14.]
S. De Meyer, H. Azijn, D. Surleraux, D. Jochmans, A. Tahri, R. Pauwels, et al.
TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates.
Antimicrob Agents Chemother, 49 (2005), pp. 2314-2321
[15.]
Food and Drug Administration (FDA), Division of Antiviral Drug Products. Guidance for industry. Antiretroviral drugs using plasma HIV RNA measurements: clinical considerations for accelerated and traditional approval. Prepared by the Office of Drug Evaluation IV in the Centre for Drug Evaluation and Research (CDER), Appendix B; October 2002 [accedido, 22 Dic 2006]. Disponible en: http://www.fda.gov/cder/guidance/index.htm
[16.]
B. Winters, H. Vermeiren, E. Van Craenenbroeck, P. Lecocq, T. Vangeneugden, M.P. De Béthune, et al.
Development of VircoTYPE resistance analysis, including clinical cut-offs for TMC 114.
15th Internacional Drug Resistance Workshop,
[17.]
V.A. Johnson, F. Brun-Vezinet, B. Clotet, B. Conway, D.R. Kuritzkes, D. Pillay, et al.
Update of the drug resistance mutations in HIV-1: Fall 2005.
Top HIV Med, 13 (2005), pp. 125-131
[18.]
J.D. Baxter, J.M. Schapiro, C.A. Boucher, V.M. Kohlbrenner, D.B. Hall, J.R. Scherer, et al.
Genotypic changes in human immunodeficiency virus type 1 protease associated with reduced susceptibility and virologic response to the protease inhibitor tipranavir.
J Virol, 80 (2006), pp. 10794-10801
[19.]
S.M. Mueller, M. Daeumer, R. Kaiser, H. Walter, R. Colonno, K. Korn.
Susceptibility to saquinavir and atazanavir in highly protease inhibitor (PI) resistant HIV-1 is caused by lopinavir-induced drug resistance mutation L76V.
13th International Drug Resistance Workshop,
[20.]
K. Van den Borght, H. Vermeiren, P. Lecocq, T. Pattery, P. Alen, L. Bacheler, et al.
The effects of the 76V mutation protease-inhibitor (PI) susceptibility are PI- and context-specific.
16th International AIDS Conference,
[21.]
C. Loveday, E. MacRae, On behalf of the ICVC Clinical Collaborative Research Group.
Susceptibility of a protease inhibitor (PI) treatment-experienced UK clinical cohort to TMC114.
8th International Congress on Drug Therapy in HIV Infection,
[22.]
A.R. Rinehart, G. Picchio, M.P. De Béthune, L.T. Bacheler, T. Pattery, B. Waslkowski, et al.
Prevalence of darunavir-associated mutations in samples received for routine clinical resistance testing.
Frontiers in Drug Development for Antiretroviral therapies, (2006),
[23.]
Lathouwers E, De Meyer S, Dierynck I, Van Der Borght K, Bacheler LT, Pattery T, et al. Update on the prevalence of the 2007 darunavir resistance-associated mutations in samples received for routine clinical resistance testing 6th European HIV Drug Resistance Workshop. Budapest, 2008, March 26-28 [abstract 68].
[24.]
S. De Meyer, T. Vangeneugden, E. Lefebvre, H. Azijn, I. De Baere, B. Van Baelen, et al.
Phenotypic and genotypic determinants of resistance to TMC114: Pooled analysis of POWER 1, 2 and 3.
15th International Drug Resistance Workshop,
[25.]
S. De Meyer, E. Lathouwers, I. Dierynck, E. De Paepe, B. Van Baelen, T. Vangeneugden, et al.
Characterization of virologic failures on darunavir/ritonavir in the randomized, controlled, Phase III TITAN trial in treatment-experienced patients.
15th Conference on Retroviruses and Opportunistic Infections,
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos