metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Efectos indirectos de la infección por citomegalovirus
Información de la revista
Vol. 29. Núm. S6.
La infección por citomegalovirus en el trasplante de órgano sólido: nuevas evidencias de un patógeno clásico
Páginas 6-10 (diciembre 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 29. Núm. S6.
La infección por citomegalovirus en el trasplante de órgano sólido: nuevas evidencias de un patógeno clásico
Páginas 6-10 (diciembre 2011)
Acceso a texto completo
Efectos indirectos de la infección por citomegalovirus
Indirect effects of cytomegalovirus infection
Visitas
4897
Juan José Castón Osorioa,
Autor para correspondencia
juanjoco2005@yahoo.es

Autor para correspondencia.
, Felipe Zurbano Goñib
a Unidad de Enfermedades Infecciosas, Hospital General Universitario de Ciudad Real, Ciudad Real, España
b Unidad de Trasplante Pulmonar, Hospital Universitario Marqués de Valdecilla, Santander, España
Este artículo ha recibido
Información del artículo
Resumen

A pesar de la mejora en las estrategias de prevención, el citomegalovirus (CMV) continúa siendo el principal causante de infección en los pacientes trasplantados de órgano sólido. En estos pacientes, además de efectos directos, como el síndrome viral o la enfermedad invasiva de órgano, el CMV puede ocasionar efectos indirectos que resultan de la interacción del virus con el sistema inmune del huésped. Esta interacción puede desembocar en un mayor grado de inmunosupresión, con el consiguiente aumento de infecciones oportunistas, en un mayor riesgo de malignidad (enfermedad linfoproliferativa postrasplante asociada al virus de Epstein-Barr) y en un mayor riesgo de disfunción del injerto. Aunque en la actualidad no puede establecerse una relación directa de causalidad entre el CMV y la mayoría de los efectos indirectos descritos, numerosos estudios experimentales y clínicos han evidenciado una asociación entre la aparición de estos efectos y el CMV. Además, se ha evidenciado la disminución del riesgo de alguno de estos efectos, como la aparición de infecciones oportunistas, con la instauración de pautas de profilaxis frente al virus.

Palabras clave:
Citomegalovirus
Efectos indirectos
Rechazo
Trasplante
Inmunosupresión
Infección
Abstract

Despite improvements in prevention strategies, cytomegalovirus (CMV) continues to be the main cause of infection in solid organ transplant recipients. In these patients, in addition to direct effects, such as viral syndrome or invasive organ disease, CMV can cause indirect effects resulting from the interaction of the virus with the host's immune system. This interaction may increase immunosuppression, with a consequent rise in opportunistic infections and the risk of malignancies (Epstein-Barr virus-associated posttransplantation lymphoproliferative disease) and graft dysfunction. Currently, a direct causal relation between CMV and most of the indirect effects described cannot be established. However, numerous experimental and clinical studies have found an association between the development of these effects and CMV. Moreover, some of these effects, such as the development of opportunistic infections, have been reduced by CMV prophylaxis.

Keywords:
Cytomegalovirus
Indirect effects
Rejection
Transplant
Immunosuppression
Infection
El Texto completo está disponible en PDF
Bibliografía
[1.]
H.T. Reyburn, O. Mandelboim, M. Vales-Gómez, D.M. Davis, L. Pazmany, J.L. Strominger.
The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells.
Nature, 386 (1997), pp. 514-517
[2.]
M.J. Reddehase.
Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance.
Nat Rev Immunol, 2 (2002), pp. 831-844
[3.]
K. Ahn, A. Angulo, P. Ghazal, P.A. Peterson, Y. Yang, K. Fruh.
Human cytomegalovirus inhibits antigen presentation by a sequential multistep process.
Proc Natl Acad Sci USA, 93 (1996), pp. 10990-10995
[4.]
R.D. Schrier, G.P. Rice, M.B. Oldstone.
Suppression of natural killer cell activity and T cell proliferation by fresh isolates of human cytomegalovirus.
J Infect Dis, 153 (1986), pp. 1084-1091
[5.]
U. Sester, D. Presser, J. Dirks, B.C. Gartner, H. Kohler, M. Sester.
PD-1 expression and IL-2 loss of cytomegalovirus- specific T cells correlates with viremia and reversible functional anergy.
Am J Transplant, 8 (2008), pp. 1486-1497
[6.]
A.A. Rahman, M. Teschner, K.K. Sethi, H. Brandis.
Appearance of IgG (Fc) receptor(s) on cultured human fibroblasts infected with human cytomegalovirus.
J Immunol, 117 (1976), pp. 253-258
[7.]
O.B. Spiller, S.M. Hanna, D.V. Devine, F. Tufaro.
Neutralization of cytomegalovirus virions: the role of complement.
J Infect Dis, 176 (1997), pp. 339-347
[8.]
S.A. Welte, C. Sinzger, S.Z. Lutz, H. Singh-Jasuja, K.L. Sampaio, U. Eknigk, et al.
Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein.
Eur J Immunol, 33 (2003), pp. 194-203
[9.]
P. Tomasec, E.C. Wang, A.J. Davison, B. Vojtesek, M. Armstrong, C. Griffin, et al.
Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141.
Nat Immunol, 6 (2005), pp. 181-188
[10.]
T.L. Chapman, A.P. Heikeman, P.J. Bjorkman.
The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18.
Immunity, 11 (1999), pp. 603-613
[11.]
E.C. Wang, B. McSharry, C. Retiere, P. Tomasec, S. Williams, L.K. Borysiewicz, et al.
UL40-mediated NK evasion during productive infection with human cytomegalovirus.
Proc Natl Acad Sci USA, 99 (2002), pp. 7570-7575
[12.]
G. Frascaroli, S. Varani, N. Blankenhorn, R. Pretsch, M. Bacher, L. Leng, et al.
Human cytomegalovirus paralyzes macrophage motility through down-regulation of chemokine receptors, reorganization of the cytoskeleton, and release of macrophage migration inhibitory factor.
J Immunol, 182 (2009), pp. 477-488
[13.]
J.D. Walker, C.L. Maier, J.S. Pober.
Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes.
J Immunol, 182 (2009), pp. 1548-1559
[14.]
J. Gavaldá, O. Len, R. San Juan, J.M. Aguado, J. Fortún, C. Lumbreras, et al.
Risk factors for invasive aspergillosis in solid-organ transplant recipients: a case-control study.
Clin Infect Dis, 41 (2005), pp. 52-59
[15.]
J. Fortún, P. Martín-Dávila, S. Moreno, E. De Vicente, J. Nuno, A. Candelas, et al.
Risk factors for invasive aspergillosis in liver transplant recipients.
Liver Transpl, 8 (2002), pp. 1065-1070
[16.]
M. Radisic, R. Lattes, J.F. Chapman, M. Del Carmen Rial, O. Guardia, F. Seu, et al.
Risk factors for Pneumocystis carinii pneumonia in kidney transplant recipients: a casecontrol study.
Transpl Infect Dis, 5 (2003), pp. 84-93
[17.]
A.Y. Peleg, S. Husain, Z.A. Qureshi, F.P. Silveira, M. Sarumi, K.A. Shutt, et al.
Risk factors, clinical characteristics, and outcome of Nocardia infection in organ transplant recipients: a matched case-control study.
Clin Infect Dis, 44 (2007), pp. 1307-1314
[18.]
M.E. Falagas, D.R. Snydman, M.J. George, B. Werner, R. Ruthazer, J. Griffith, et al.
Incidence and predictors of cytomegalovirus pneumonia in orthotopic liver transplant recipients. Boston Center for Liver Transplantation CMVIG Study Group.
Transplantation, 61 (1996), pp. 1716-1720
[19.]
M.J. George, D.R. Snydman, B.G. Werner, J. Griffith, M.E. Falagas, N.N. Dougherty, et al.
The independent role of cytomegalovirus as a risk factor for invasive fungal disease in orthotopic liver transplant recipients. Boston Center for Liver Transplantation CMVIG-Study Group. Cytogam, MedImmune, Inc. Gaithersburg, Maryland.
Am J Med, 103 (1997), pp. 106-113
[20.]
R. Manez, M.C. Breinig, P. Linden, J. Wilson, J. Torre-Cisneros, S. Kusne, et al.
Posttransplant lymphoproliferative disease in primary Epstein-Barr virus infection after liver transplantation: the role of cytomegalovirus disease.
J Infect Dis, 176 (1997), pp. 1462-1467
[21.]
J. Hjelmesaeth, S. Sagedal, A. Hartmann, H. Rollag, T. Egeland, M. Hagen, et al.
Asymptomatic cytomegalovirus infection is associated with increased risk of newonset diabetes mellitus and impaired insulin release after renal transplantation.
Diabetologia, 47 (2004), pp. 1550-1556
[22.]
J. Hjelmesaeth, T. Jenssen, M. Hagen, T. Egeland, A. Hartmann.
Determinants of insulin secretion after renal transplantation.
Metabolism, 52 (2003), pp. 573-578
[23.]
J. Hjelmesaeth, K. Midtvedt, T. Jenssen, A. Hartmann.
Insulin resistance after renal transplantation: impact of immunosuppressive and antihypertensive therapy.
Diabetes Care, 24 (2001), pp. 2121-2126
[24.]
X. Ye, H.T. Kuo, M.S. Sampaio, Y. Jiang, S. Bunnapradist.
Risk factors for development of new-onset diabetes mellitus after transplant in adult lung transplant recipients.
Clin Transplant, (2010),
[25.]
H.T. Kuo, M.S. Sampaio, X. Ye, P. Reddy, P. Martin, S. Bunnapradist.
Risk factors for newonset diabetes mellitus in adult liver transplant recipients, an analysis of the Organ Procurement and Transplant Network/United Network for Organ Sharing database.
Transplantation, 89 (2010), pp. 1134-1140
[26.]
S. Cantisan, J. Torre-Cisneros, R. Lara, A. Rodríguez-Benot, F. Santos, J. Gutiérrez-Aroca, et al.
Age-dependent association between low frequency of CD27/CD28 expression on pp65 CD8+ T cells and cytomegalovirus replication after transplantation.
Clin Vaccine Immunol, 16 (2009), pp. 1429-1438
[27.]
K. Mc Laughlin, C. Wu, G. Fick, M. Muirhead, D. Hollomby, A. Jevnikar.
Cytomegalovirus seromismatching increases the risk of acute renal allograft rejection.
Transplantation, 74 (2002), pp. 813-816
[28.]
D. Lowance, H.H. Neumayer, C.M. Legendre, J.P. Squifflet, J. Kovarik, P.J. Brennan, et al.
Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation.
N Engl J Med, 340 (1999), pp. 1462-1470
[29.]
S. Sagedal, K.P. Nordal, A. Hartmann, S. Sund, H. Scott, M. Degre, et al.
The impact of cytomegalovirus infection and disease on rejection episodes in renal allograft recipients.
Am J Transplant, 2 (2002), pp. 850-856
[30.]
M.D. Pescovitz.
Benefis of cytomegalovirus prophylaxis in solid organ transplantation.
[31.]
G. Opelz, B. Dohler, A. Ruhenstroth.
Cytomegalovirus prophylaxis and graft outcome in solid organ transplantation: a collaborative transplant study report.
Am J Transplant, 4 (2004), pp. 928-936
[32.]
P.C. Nett, D.M. Heisey, L.A. Fernández, H.W. Sollinger, J.D. Pirsch.
Association of cytomegalovirus disease and acute rejection with graft loss in kidney transplantation.
Transplantation, 78 (2004), pp. 1036-1041
[33.]
C. Paya, A. Humar, E. Domínguez, K. Washburn, E. Blumberg, B. Alexander, et al.
Efficacy and safety of valganciclovir vs. oral ganciclovir for prevention of cytomegalovirus disease in solid organ transplant recipients.
Am J Transplant, 4 (2004), pp. 611
[34.]
A. Humar, Y. Lebranchu, F. Vincenti, E.A. Blumberg, J.D. Punch, A.P. Limaye, et al.
The efficacy and safety of 200 days valganciclovir cytomegalovirus prophylaxis in high-risk kidney transplant recipients.
Am J Transplant, 10 (2010), pp. 1228-1237
[35.]
D.N. Streblow, S.L. Orloff, L.A. Nelson.
Acceleration of allograft failure by cytomegalovirus.
Curr Opin Inmunol, 19 (2007), pp. 577-582
[36.]
K. Solez, F. Vincenti, R. Filo.
Histopathologic findings from 2-year protocol biopsies from a u.s. multicenter kidney transplant trial comparing tacrolimus versus cyclosporine: a report of the fk506 kidney transplant study group.
Transplantation, 66 (1998), pp. 1736
[37.]
R.S.N. Kalil, S.L. Hudson, R.S. Gaston.
Determinants of cardiovascular mortality after renal transplantation: a role for cytomegalovirus?.
Am J Transplant, 3 (2003), pp. 79
[38.]
L. Potena, C.T.J. Holweg, C. Chin, H. Luikart, D. Weisshaar, D. Narasimban, et al.
Acute rejection and cardiac allograft vascular disease is reduced by supresión of subclinical cytomegalovirus infection.
Transplantation, 82 (2006), pp. 398-405
[39.]
H.A. Valantine, S.Z. Gao, S.G. Menon, D.G. Renlund, S.A. Hunt, P. Oyer, et al.
Impact of prophylactic immediate posttransplant ganciclovir on development of transplant atherosclerosis: a post hoc analysis of a randomized placebo-controlled study.
Circulation, 100 (1999), pp. 61-66
[40.]
W. Tu, L. Potena, P. Stepick-Biek, L. Liu, K.Y. Dionis, H. Luikart, et al.
T Cell immunity to subclinical cytomegalovirus infection reduces cardiac allograft disease.
Circulation, 114 (2006), pp. 1608-1615
[41.]
M. Zakliczynski, A. Krynicka-Mazurek, D. Konecka-Mrowka, J. Nozynski, S. Zeglen, R. Przybylski, et al.
Cytomegalovirus infection does not accelerate microvasculopathy development in heart transplant recipients.
Transplant Proc, 41 (2009), pp. 3219-3221
[42.]
M. Slifkin, R. Ruthazer, R. Freeman, J. Bloom, J. Fitzmaurice, R. Fairchild, et al.
Impact of Cytomegalovirus Prophylaxis on Rejection Following Orthotopic Liver Transplantation.
Liver Transplant, 11 (2005), pp. 1597-1602
[43.]
N. Singh, C. Wannstedt, L. Keyes, M.M. Wagener, T. Gayowski, T.V. Cacciarielli, et al.
Indirect outcomes associated with cytomegalovirus (opportunistic infections, hepatitis C virus sequelae and mortality) in liver transplant recipients with the use of preemptive therapy for 13 years.
Transplantation, 79 (2005), pp. 1428-1434
[44.]
P.C. Evans, A. Soin, T.G. Wreghitt, C.J. Taylor, D.G. Wight, G.L.M. Alexander.
An Association between cytomegalovirus infection and chronic rejection after liver transplantation.
Transplantation, 69 (2000), pp. 30
[45.]
R.R. Razonable, K.W. Burak, H. Van Cruijsen, R.A. Brown, M.R. Charlton, T.F. Smith, et al.
The pathogenesis of hepatitis C virus is influenced by cytomegalovirus.
Clin Infect Dis, 35 (2002), pp. 974-981
[46.]
P.D. Shah, J.F. McDyer.
Viral infections in lung transplant recipients.
Semin Respir Crit Care Med, 31 (2010), pp. 243-254
[47.]
J.A. Fishman, R.H. Rubin.
Infection in organ transplant recipients.
N Engl J Med, 338 (1998), pp. 1741
[48.]
G.P. Westall, A. Michaelides, T.J. Williams, G.I. Snell, T.C. Kotsimbos.
Bronchiolitis obliterans syndrome and early human cytomegalovirus DNAaemia dynamics after lung transplantation.
Transplantation, 75 (2003), pp. 2064-2068
[49.]
M. Estenne, J.R. Maurer, A. Boehler, J.J. Egan, A. Frost, M. Hertz, et al.
BOS Update. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria.
J Heart Lung Transplant, 21 (2002), pp. 297-310
[50.]
M.J. Russo, D.I. Sternberg, K.N. Hong, R.A. Sorabella, A.J. Moskowitz, A.C. Gelinjs, et al.
Postlung transplant survival is equivalent regarless of cytomegalovirus match status.
Ann Thorac Surg, 84 (2007), pp. 1129-1135
[51.]
V.G. Valentine, D. Weill, M.R. Gupta, B. Raper, S.G. Laplace, G.A. Lombard, et al.
Ganciclovir for cytomegalovirus: a call for indefinite prophylaxis in lung transplantation.
J Heart Lung Transplant, 27 (2008), pp. 875-881
[52.]
P. Solidoro, D. Libertucci, L. Delsedime, E. Ruffini, M. Bosco, C. Costa, et al.
Combined cytomegalovirus prophylaxis in lung transplantation: effects on acute rejection, lymphocytic bronchitis/bronchiolitis, and herpesvirus infections.
Transplant Proc, 40 (2008), pp. 2013-2014
[53.]
E. Ruttmann, C. Geltner, B. Bucher, H. Ulmer, D. Hofer, H.B. Hangler, et al.
Combined CMV prophylaxis improves outcomes and reduces the risk for bronchiolitis obliterans syndrome (BOS) after lung transplantation.
Transplantation, 81 (2006), pp. 1415-1420
[54.]
C. Chmiel, R. Speich, M. Hofer, D. Michel, T. Mertens, W. Weder, et al.
Ganciclovir/valganciclovir prophylaxis decreases cytomegalovirus-related events and bronchiolitis obliterans syndrome after lung transplantation.
Clin Infect Dis, 46 (2008), pp. 831-839
Copyright © 2011. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos