metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Mecanismos de resistencia y fracaso al tratamiento con maraviroc
Información de la revista
Vol. 26. Núm. S11.
Maraviroc, el primer antagonista de los receptores de VIH
Páginas 28-33 (octubre 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S11.
Maraviroc, el primer antagonista de los receptores de VIH
Páginas 28-33 (octubre 2008)
Acceso a texto completo
Mecanismos de resistencia y fracaso al tratamiento con maraviroc
Mechanisms of resistance and failure of treatment with maraviroc
Visitas
2636
Rafael Delgado
Autor para correspondencia
rdelgado.hdoc@salud.madrid.org

Correspondencia: Laboratorio de Microbiología Molecular. Servicio de Microbiología. Hospital Universitario 12 de octubre. Avda. de Córdoba s/n. 28041 Madrid. España.
Laboratorio de Microbiología Molecular. Servicio de Microbiología. Hospital Universitario 12 de Octubre. Madrid. España
Este artículo ha recibido
Información del artículo

Maraviroc (MVC) es un nuevo antagonista del correceptor CCR5 y es el primer compuesto antiviral disponible que tiene como diana un factor celular imprescindible para la entrada del VIH. La información disponible en estudios clínicos con MVC indica que la causa principal del fallo terapéutico es, más que el cambio de tropismo, la rápida selección de cepas preexistentes con afinidad por CXCR4 no detectadas por la prueba de referencia. Una prueba de tropismo con sensibilidad mejorada recientemente desarrollado contribuirá a detectar la presencia minoritaria, pero clínicamente significativa, de cepas que utilizan CXCR4. La resistencia a MVC se ha podido evidenciar in vivo en algunos pacientes. El mecanismo de esta resistencia parece estar relacionado con cambios en gp120 y, fundamentalmente, en la región V3 que permiten al virus reconocer el correceptor CCR5 unido a la molécula de MVC. Desde un punto de vista práctico, no disponemos por el momento de pruebas estandarizadas para evaluar la susceptibilidad a MVC, aunque en las pruebas fenotípicas de dosis-respuesta un porcentaje máximo de inhibición (MPI) < 95% sería indicativo de resistencia al compuesto. Igualmente, aunque se han descrito algunas mutaciones relacionadas con resistencia en V3 y otras zonas de gp120, esta información preliminar indica diferentes patrones de resistencia y desconocemos por el momento las mutaciones canónicas para poder establecer algoritmos de genotipificación.

Palabras clave:
Maraviroc
CCR5
CXCR4
Resistencia
Tropismo

Maraviroc (MVC) is a new antagonist of the CCR5 coreceptor and is the first antiviral compound available that has a cell factor essential for HIV entry as a target. The information available from clinical studies with MVC suggests that the main cause of therapeutic failure is, more than the tropism change, the rapid selection of pre-existing strains with an affinity for CXCR4, not detected by the reference test. A recently developed tropism test with an improved sensitivity will help to detect the minority, but clinically significant, presence of strains that use CXCR4. Evidence of resistance to MVC has been shown in vivo in some patients. The mechanism of this resistance appears to be related to changes in gp120 and mainly in the V3 region which enables the virus to recognise the CCR5-co-receptor bound to the MVC molecule. From a practical point of view, standardised tests are currently unavailable to assess susceptibility to MVC, although in dose-response phenotype tests a maximum percentage inhibition (MPI) < 95% would be indicative of resistance to the compound. Similarly, although some mutations associated with resistance in V3, and other zones of gp120, have been described, this preliminary information suggests different resistance patterns and at the moment, we do not know the canonical mutations to be able to establish genotyping algorithms.

Key words:
Maraviroc
CCR5
CXCR4
Resistance
Tropism
El Texto completo está disponible en PDF
Bibliografía
[1.]
G. Fatkenheuer, A.L. Pozniak, M.A. Johnson, A. Plettenberg, S. Staszewski, A.I. Hoepelman, et al.
Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1.
Nat Med, 11 (2005), pp. 1170-1172
[2.]
M. Westby, C. Smith-Burchnell, J. Mori, M. Lewis, M. Mosley, M. Stockdale, et al.
Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry.
J Virol, 81 (2007), pp. 2359-2371
[3.]
P. Dorr, M. Westby, S. Dobbs, P. Griffin, B. Irvine, M. Macartney, et al.
Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.
Antimicrob Agents Chemother, 49 (2005), pp. 4721-4732
[4.]
K. Maeda, D. Das, H. Ogata-Aoki, H. Nakata, T. Miyakawa, Y. Tojo, et al.
Structural and molecular interactions of CCR5 inhibitors with CCR5.
J Biol Chem, 281 (2006), pp. 12688-12698
[5.]
D.S. Dimitrov.
Cell biology of virus entry.
Cell, 101 (2000), pp. 697-702
[6.]
P. Dorr, M. Westby, S. Dobbs, P. Griffin, B. Irvine, M. Macartney, et al.
Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.
Antimicrob Agents Chemother, 49 (2005), pp. 4721-4732
[7.]
A.G. Dalgleish, P.C.L. Beverley, P.R. Clapham, D.H. Crawford, M.F. Greaves, R.A. Weiss.
The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus.
Nature, 312 (1984), pp. 763-768
[8.]
E. Oberlin, A. Amara, F. Bachelerie, C. Bessia, J.L. Virelizier, F. Arenzana-Seisdedos, et al.
The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1.
Nature, 382 (1996), pp. 833-835
[9.]
H. Deng, R. Liu, W. Ellmeier, S. Choe, D. Unutmaz, M. Burkhart, et al.
Identification of a major co-receptor for primary isolates of HIV-1.
Nature, 381 (1996), pp. 661-666
[10.]
E.M. Long, S.M. Rainwater, L. Lavreys, K. Mandaliya, J. Overbaugh.
HIV type 1 variants transmitted to women in Kenya require the CCR5 coreceptor for entry, regardless of the genetic complexity of the infecting virus.
AIDS Res Hum Retroviruses, 18 (2002), pp. 567-576
[11.]
A. Bjorndal, H. Deng, M. Jansson, J.R. Fiore, C. Colognesi, A. Karlsson, et al.
Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype.
J Virol, 71 (1997), pp. 7478-7487
[12.]
Z.L. Brumme, J. Goodrich, H.B. Mayer, C.J. Brumme, B.M. Henrick, B. Wynhoven, et al.
Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals.
J Infect Dis, 192 (2005), pp. 466-474
[13.]
B.J. Doranz, J. Rucker, Y. Yi, R.J. Smyth, M. Samson, S.C. Peiper, et al.
A dualtropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors.
Cell, 85 (1996), pp. 1149-1158
[14.]
R.L. Willey, T.S. Theodore, M.A. Martin.
Amino acid substitutions in the human immunodeficiency virus type 1 gp120 V3 loop that change viral tropism also alter physical and functional properties of the virion envelope.
J Virol, 68 (1994), pp. 4409-4419
[15.]
M.A. Jensen, A.B. ’t Wout.
Predicting HIV-1 coreceptor usage with sequence analysis.
AIDS Rev, 5 (2003), pp. 104-112
[16.]
W. Huang, J. Toma, S. Fransen, E. Stawiski, J.D. Reeves, J.M. Whitcomb, et al.
Coreceptor tropism can be influenced by amino acid substitutions in the gp41 transmembrane subunit of human immunodeficiency virus type 1 envelope protein.
J Virol, (2008),
[17.]
L. Waters, S. Mandalia, P. Randell, A. Wildfire, B. Gazzard, G. Moyle.
The impact of HIV tropism on decreases in CD4 cell count, clinical progression, and subsequent response to a first antiretroviral therapy regimen.
Clin Infect Dis, 46 (2008), pp. 1617-1623
[18.]
C. Pastore, A. Ramos, D.E. Mosier.
Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching.
[19.]
Z. Chen, A. Gettie, D.D. Ho, P.A. Marx.
Primary SIVsm isolates use the CCR5 coreceptor from sooty mangabeys naturally infected in west Africa: a comparison of coreceptor usage of primary SIVsm, HIV-2, and SIVmac.
Virology, 246 (1998), pp. 113-124
[20.]
T. Cilliers, J. Nhlapo, M. Coetzer, D. Orlovic, T. Ketas, W.C. Olson, et al.
The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C.
J Virol, 77 (2003), pp. 4449-4456
[21.]
L. Morris, T. Cilliers, H. Bredell, M. Phoswa, D.J. Martin.
CCR5 is the major coreceptor used by HIV-1 subtype C isolates from patients with active tuberculosis.
AIDS Res Hum Retroviruses, 17 (2001), pp. 697-701
[22.]
J. Bhattacharya, P.J. Peters, P.R. Clapham.
CD4-independent infection of HIV and SIV: implications for envelope conformation and cell tropism in vivo.
AIDS, 17 (2003), pp. S35-S43
[23.]
D. Cecilia, C. Kleeberger, A. Muñoz, J.V. Giorgi, S. Zolla-Pazner.
A longitudinal study of neutralizing antibodies and disease progression in HIV-1-infected subjects.
J Infect Dis, 179 (1999), pp. 1365-1374
[24.]
Westby M. In vitro and in vivo tropism and resistance evaluation; 2007. Disponible en: www.fda.gov/ohrms/dockets/ac/07/slides/2007-4283s1-01-04-Pfizer_Westby.pdf
[25.]
A.J. Low, W. Dong, D. Chan, T. Sing, R. Swanstrom, M. Jensen, et al.
Current V3 genotyping algorithms are inadequate for predicting X4 co-receptor usage in clinical isolates.
[26.]
J.M. Whitcomb, W. Huang, S. Fransen, K. Limoli, J. Toma, T. Wrin, et al.
Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism.
Antimicrob Agents Chemother, 51 (2007), pp. 566-575
[27.]
M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, et al.
Genome sequencing in microfabricated high-density picolitre reactors.
Nature, 437 (2005), pp. 376-380
[28.]
M. Lewis, I. James, M. Braverman, B. Desany, T. Jarvie, M. Penny, et al.
Evaluation of an ultra-deep sequencing method to identify minority sequence variants in the HIV-1 env gene from clinical samples.
14th CROI, (2007),
[29.]
J. Reeves, D. Han, T. Wilkin, T. Wrin, D. Kuritzkez, C. Petropoulos, et al.
An enhanced version of the trofile HIV co-receptor tropism assay predicts emergence of CXCR4 use in ACTG5211 vicriviroc trial samples.
15th CROI, (2008),
[30.]
P. Hunt, S. Deeks, W. Huang, E. Coakley, D. Han, C. Petropoulos, et al.
Detection of viral co-receptor tropism changes with a high-sensitivity phenotypic assay among HIV-infected patients with drug-resistant viremia.
15th CROI, (2008),
[31.]
M. Westby, M. Lewis, J. Whitcomb, M. Youle, A.L. Pozniak, I.T. James, et al.
Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir.
[32.]
A. Trkola, S.E. Kuhmann, J.M. Strizki, E. Maxwell, T. Ketas, T. Morgan, et al.
HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use.
Proc Natl Acad Sci U S A, 99 (2002), pp. 395-400
[33.]
A.J. Marozsan, S.E. Kuhmann, T. Morgan, C. Herrera, E. Rivera-Troche, S. Xu, et al.
Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCHD).
Virology, 338 (2005), pp. 182-199
[34.]
M. Lewis, J. Mori, P. Simpson, J. Whitcomb, X. Li, D. Roberston, et al.
Changes in V3 loop sequence associated with failure of maraviroc treatment in patients enrolled in the MOTIVATE 1 and 2 trials.
15th CROI, (2008),
[35.]
J. Mori, M. Lewis, P. Simpson.
Characterization of maraviroc resistance in patients failing treatment with CCR5-tropic virus in MOTIVATE 1 and MOTIVATE 2 (24 week analysis).
6th European HIV Drug Resistance Workshop,
[36.]
K. Maeda, H. Nakata, Y. Koh, T. Miyakawa, H. Ogata, Y. Takaoka, et al.
Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/ CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro.
[37.]
J. Heera, M. Saag, P. Ive, J. Whitcomb, M. Lewis, L. McFadyen, et al.
Virological correlates associated with treatment failure at week 48 in the phase 3 study of maraviroc in treatment-naive patients.
15th CROI, (2008),
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos