metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Neumonía nosocomial por grampositivos
Información de la revista
Vol. 26. Núm. S2.
Infecciones por grampositivos: perspectivas terapéuticas actuales
Páginas 53-60 (enero 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S2.
Infecciones por grampositivos: perspectivas terapéuticas actuales
Páginas 53-60 (enero 2008)
Infecciones por grampositivos: perspectivas terapéuticas actuales
Acceso a texto completo
Neumonía nosocomial por grampositivos
Nosocomial pneumonia due to gram-positive microorganisms
Visitas
4077
Thiago Lisboaa,b,c, Jordi Relloa,b,c,
Autor para correspondencia
jrello.hj23.ics@gencat.net

Correspondencia: Dr. J. Rello. Servicio de Medicina Intensiva. Hospital Universitario Joan XXIII. Dr. Mallafre Guasch, 4. 43007 Tarragona. España.
a Servicio de Medicina Intensiva. Hospital Universitari Joan XXIII. Tarragona. España
b Universidad Rovira i Virgili. Institut Pere Virgili. Tarragona. España
c CIBER Enfermedades Respiratorias. Tarragona. España
Este artículo ha recibido
Información del artículo

En este artículo revisamos aspectos relacionados con la neumonía nosocomial causada por grampositivos, y especialmente de los episodios causados por Staphylococcus aureus resistenten a meticilina (SARM), por su creciente incidencia y mala evolución asociada. Evaluaremos las opciones terapéuticas disponibles, su adecuación y las opciones terapéuticas emergentes para mejorar el pronóstico de los pacientes afectados por este tipo de infecciones. Ante la escasez de alternativas eficaces en el tratamiento de la neumonía nosocomial por SARM, discutimos la disyuntiva de considerar linezolid como la mejor opción disponible.

Palabras clave:
SARM
Neumonía nosocomial
Grampositivos
Antimicrobianos

This article reviews aspects related to nosocomial pneumonia due to Gram-positive microorganisms and especially episodes due to MRSA, because of their growing incidence and poor prognosis. The available therapeutic options, their suitability, and the emergent therapeutic options that aim to improve prognosis in patients with this kind of infection are evaluated. Given the lack of effective alternatives to treat nosocomial pneumonia due to MRSA, the possibility of using linezolid as the best available strategy to date is discussed.

Key words:
MRSA
Nosocomial pneumonia
Gram-positive
Antimicrobial agents
El Texto completo está disponible en PDF
Bibliografía
[1.]
M.H. Kollef, A. Shorr, Y.P. Tabak, V. Gupta, L.Z. Liu, R.S. Johanes.
Epidemiology and outcomes of Health-care associated pneumonia: results from a large US Database of Culture-Positive Pneumonia.
Chest, 128 (2005), pp. 3854-3862
[2.]
M.J. Richards, J.R. Edwards, D.H. Culver, R.P. Gaynes.
Nosocomial infections in medical intensive care units in the US. National Nosocomial Surveillance System.
Crit Care Med, 27 (1999), pp. 887-892
[3.]
J. Rello, D.A. Ollendorf, G. Oster, M. Vera-Llonch, L. Bellm, R. Redman, et al.
Epidemiology and outcomes of ventilator-associated pneumonia in a large US database.
Chest, (2002),
[4.]
J. Rello, M. Rue, P. Jubert, G. Muses, R. Sonora, J. Valles, et al.
Survival in patients with nosocomial pneumonia: impact of severity of illness and the aetiologic agent.
Crit Care Med, 25 (1997), pp. 1862-1867
[5.]
American Thoracic Society.
Guidelines for the management of adults with hospital-acquired, ventilator –associated and healthcare –associated pneumonia.
Am J Respir Crit Care Med, 171 (2005), pp. 388-416
[6.]
J. Rello, M. Sá-Borges, H. Correa, S.R. Leal, J. Baraibar.
Variations in etiology of ventilator-associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices.
Am J Respir Crit Care Med, 160 (1999), pp. 608-613
[7.]
D. Koulenti, P. Myrianthefs, G. Dimopoulos, G. Baltopoulos.
Hospital-acquired pneumonia caused by methicilin-resistant Staphylococcus aureus.
Enferm Infecc Microbiol Clin, 23 (2005), pp. 37-45
[8.]
D.R. Park.
The microbiology of ventilator-associated pneumonia.
Respir Care, 50 (2005), pp. 742-763
[9.]
J. Rello, V. Ausina, M. Ricart, J. Castella, G. Prats.
Impact of previous antimicrobial therapy on the etiology and outcome of ventilator-associated pneumonia.
Chest, 104 (1993), pp. 1230-1235
[10.]
D.R. Park.
Antimicrobial treatment of ventilator-associated pneumonia.
Respir Care, 50 (2005), pp. 932-952
[11.]
N. Woodford.
Biological counterstrike: antibiotic resistance mechanisms of gram-positive cocci.
Clin Microb Infect, 11 (2005), pp. 2-21
[12.]
C. González, M. Rubio, J. Romero-Vivas, M. González, J.J. Picazo.
Bacteremic pneumonia due to Staphylococcus aureus: a comparison of disease caused by methicilin-resistant and methicilin-susceptible organisms.
Clin Infect Dis, 29 (1999), pp. 1171-1177
[13.]
K. Aghbat, T. Lisboa, A. Pobo, A. Rodríguez, A. Sandiumenge, E. Díaz, et al.
Management of ventilator-associated pneumonia in a multidisciplinary intensive care unit : does trauma make a difference?.
[14.]
S.K. Fridkin.
Increasing prevalence of antimicrobial resistance in intensive care units.
Crit Care Med, 29 (2001), pp. 64-68
[15.]
M. Bodi, C. Ardanuy, J. Rello.
Impact of gram-positive resistance on outcome of nosocomial pneumonia.
Crit Care Med, 29 (2001), pp. 82-86
[16.]
K. Sieradzki, R.B. Roberts, S.W. Haber, A. Tomasz.
The development of vancomycin resistance in a patient with methicilin-resistant Staphylococcus aureus infection.
N Engl J Med, 340 (1999), pp. 517-523
[17.]
J. Ariza, M. Pujol, J. Cabo, C. Pena, N. Fernández, J. Linares, et al.
Vancomycin in surgical infections due to methicilin-resistant Staphylococcus aureus with heterogeneous resistance to vancomycin.
Lancet, 353 (1999), pp. 1587-1588
[18.]
F. Guerin, A. Buu-Hoi, J.L. Mainardi, G. Kac, N. Colardelle, S. Vaupré, et al.
Outbreak of methicilin-resistant Staphylococcus aureus with reduced susceptibility to glycopeptides in a Parisian Hospital.
J Clin Microbiol, 38 (2000), pp. 2985-2988
[19.]
J.L. Trouillet, J. Chastre, A. Vuagnat, M.L. Jolly-Guillou, D. Combaux, M.C. Dombret, C. Gibert.
Ventilator-associated pneumonia caused by potentially drugresistant bacteria.
Am J Respir Crit Care Med, 157 (1998), pp. 531-539
[20.]
A.M. Baker, J.W. Meredith, E.F. Haponik.
Pneumonia in intubated trauma patients. Microbiology and Outcomes.
Am J Respir Crit Care Med, 153 (1996), pp. 343-349
[21.]
M.S. Niederman, D.E. Craven, E.M. Fein, D.E. Schultz.
Pneumonia in the critically ill hospitalized patient.
Chest, 97 (1990), pp. 170-181
[22.]
E.H. Ibrahim, S. Ward, G. Sherman, M.H. Kollef.
A comparative analysis of patients with early-onset vs late –onset nosocomial pneumonia in the ICU setting.
Chest, 117 (2000), pp. 1434-1442
[23.]
E. Giantsou, N. Liratzopoulos, E. Efraimidou, M. Panopoulou, E. Alepopoulou, S. Kartali-Ktenidou, et al.
Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria.
Intensive Care Med, 31 (2005), pp. 1488-1494
[24.]
J. Rello, A. Torres, M. Ricart, J. Valles, J. González, A. Artigas, et al.
Ventilatorassociated pneumonia by Staphylococcus aureus: comparison of methicilinresistant and methicilin-sensitive episodes.
Am J Respir Crit Care Med, 150 (1994), pp. 1545-1549
[25.]
O. Díaz, E. Díaz, J. Rello.
Risk factors for pneumonia in the intubated patient.
Infect Dis Clin North Am, 17 (2003), pp. 697-705
[26.]
M. Pujol, X. Corbella, C. Pena, R. Pallarés, J. Dorca, R. Verdaguer, et al.
Clinical and epidemiological findings in mechanically-ventilated patients with methicilin-resistant Staphylococcus aureus pneumonia.
Eur J Clin Microbiol Infect Dis, 17 (1998), pp. 622-628
[27.]
S.E. Cosgrove, G. Sakoulas, E. Perencevich, M.J. Schwaber, A.W. Karchmer, Y. Carmeli.
Comparison of mortality associated with methicilin-resistant and methicilin-susceptible Staphylococcus aureus bacteremia: a meta analysis.
Clin Infect Dis, 36 (2003), pp. 53-59
[28.]
H. Dupont, H. Mentec, J.P. Sollet, G. Bleichner.
Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia.
Intensive Care Med, 27 (2001), pp. 355-362
[29.]
C.M. Luna, P. Aruj, M.S. Niederman, J. Garzon, D. Violi, A. Prignoni, et al.
Appropriateness and delay to initiate therapy in ventilator-associated pneumonia.
Eur Respir J, 27 (2006), pp. 158-164
[30.]
A. Combes, C.E. Luyt, J.Y. Fagon, M. Wollf, J.L. Trouiller, C. Gibert, et al.
Impact of methicilin resistance on outcome of S. aureus ventilator-associated pneumonia.
Am J Respir Crit Care Med, 170 (2004), pp. 786-792
[31.]
J.R. Zahar, C. Clec’h, M. Tafflet, M. Garrouste-Orgeas, S. Jamali, B. Mourvillier, et al.
Is methicilin resistance associated with a worse prognosis in S. aureus ventilator-associated pneumonia?.
Clin Infect Dis, 41 (2005), pp. 1224-1231
[32.]
A.F. Shorr, A. Combes, M. Kollef, J. Chastre.
Methicilin-resistant Staphylococcus aureus prolongs intensive care unit stay in ventilator-associated pneumonia, despite initially appropriate antibiotic therapy.
Crit Care Med, 34 (2006), pp. 700-706
[33.]
J. Rello, J. Sole-Violan, M. Sa-Borges, J. Garnacho-Montero, E. Muñoz, G. Sirgo, et al.
Pneumonia caused by oxacilin-resistant Staphylococcus aureus treated with glycopeptides.
Crit Care Med, 33 (2005), pp. 1983-1987
[34.]
P.A. Moise, J.J. Schentag.
Vancomycin treatment failures in Staphylococcus aureus lower respiratory tract infections.
Int J Antimicrob Agents, Suppl 1 (2000), pp. 31-34
[35.]
M. Cruciani, G. Gatti, L. Lazzarini, G. Furlan, G. Broccali, M. Malena, et al.
Penetration of vancomycin into human lung tissue.
J Antimicrob Chemother, 38 (1996), pp. 865-869
[36.]
M.H. Scheetz, R. Wunderink, M. Postelnick, G.A. Noskin.
Potential impact of vancomycin pulmonary distribution on treatment outcomes in patients with methicilin-resistant Staphylococcus aureus pneumonia.
Pharmacotherapy, 26 (2006), pp. 539-550
[37.]
C. Lamer, V. de Beco, P. Soler, S. Calvat, J.Y. Fagon, M.C. Dombret, et al.
Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients.
Antimicrob Agents Chemother, 37 (1993), pp. 281-286
[38.]
M.N. Jeffres, W. Isakow, J.A. Doherty, P.S. McKinnon, D.J. Ritchie, S.T. Micek, et al.
Predictors of mortality for methicilin-resistant Staphylococcus aureus healthcare-associated pneumonia: specific evaluation of vancomycin pharmacokinetics Indices.
Chest, 130 (2006), pp. 947-955
[39.]
D.O. Maclayton, R.G. Hall.
Pharmacologic treatment options for nosocomial pneumonia involving methicilin-resistant Staphylococcus aureus.
Ann Pharmacother, 41 (2007), pp. 235-244
[40.]
L.K. Hidayat, D.I. Hsu, R. Quist, K.A. Shriner, A. Wong-Beringer.
High dose vancomycin therapy for methicilin-resistant Staphylococcus aureus infections: efficacy and toxicity.
Arch Intern Med, 166 (2006), pp. 2138-2144
[41.]
J.E. Conte, J.A. Golden, J. Kipps, E. Zurlinden.
Intrapulmonary pharmacokinetics of linezolid.
Antimicrob Agents Chemother, 46 (2002), pp. 1475-1480
[42.]
E. Rubinstein, S. Cammarata, T. Oliphant, R. Wunderink.
Linezolid versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind multicenter study.
Clin Infect Dis, 32 (2001), pp. 402-412
[43.]
R.G. Wunderink, S. Cammarata, T. Oliphant, M.H. Kollef.
Continuation of a randomized, double-blind, multicenter study of linezolid versus vancomycin in the treatment of patients with nosocomial pneumonia.
Clin Ther, 25 (2003), pp. 980-992
[44.]
M.H. Kollef, J. Rello, S. Cammarata, R.W. Croos-Dabrera, R.G. Wunderink.
Clinical cure and survival in gram-positive ventilator-associated pneumonia: a retrospective analysis of two double blind studies comparing linezolid with vancomycin.
Intensive Care Med, 30 (2004), pp. 388-394
[45.]
R.G. Wundering, J. Rello, S. Cammarata, R.V. Croos-Dabrera, M.H. Kollef.
Linezolid vs vancomycin: analysis of two double blind studies of patients with methicilin-resistant Staphylococcus aureus nosocomial pneumonia.
Chest, 124 (2003), pp. 1789-1797
[46.]
A.F. Shorr, G. Susla, M.H. Kollef.
Linezolid for treatment of ventilator-associated pneumonia: a cost-effective alternative to vancomycin.
Crit Care Med, 32 (2004), pp. 137-143
[47.]
F. Pea, L. Brollo, P. Viale, F. Pavan, M. Furlanut.
Teicoplanin therapeutic drug monitoring in critically ill patients: a retrospective study emphasizing the importance of a loading dose.
J Antimicrob Chemother, 51 (2003), pp. 971-975
[48.]
G.M. Eliopoulos.
Quinupristin-dalfopristin and linezolid: evidence and opinion.
Clin Infect Dis, 36 (2003), pp. 473-481
[49.]
J. Fagon, H. Patrick, D. Haas, A. Torres, C. Gibert, W.G. Cheadle, et al.
Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin.
Am J Respir Crit Care Med, 161 (2000), pp. 753-762
[50.]
V.G. Fowler, H.W. Boucher, G.R. Corey, E. Abrutyn, A.W. Karchmer, M.E. Rupp, et al.
Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.
N Engl J Med, 355 (2006), pp. 653-665
[51.]
J.A. Silverman, L.I. Mortin, A.D. Vanpraagh, T. Li, J. Alder.
Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact.
J Infect Dis, 191 (2005), pp. 2149-2152
[52.]
J.E. Conte, J.A. Golden, M. Kelly, E. Zurlinden.
Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline.
Int J Antimicrob Agents, 25 (2005), pp. 523-529
[53.]
M.E. Jones.
In-vitro profile of a new beta-lactam, ceftobiprole, with activity agains methicilin-resistant S. aureus.
Clin Microbiol Infect, 13 (2007), pp. 17-24
[54.]
G.J. Noel.
Clinical profile of ceftobiprole, a novel beta-lactam antibiotic.
Clin Microbiol Infect, Suppl 2 (2007), pp. 25-29
[55.]
E. Azoulay-Dupuis, J.P. Bedos, J. Mohler, A. Schmitt-Hoffman, M. Schleimer, S. Shapiro.
Efficacy of BAL5788, a prodrug of cephalosporin BAL9141, in a Mouse model of acute pneumococcal pneumonia.
Antimicrob Agents Chemother, 48 (2004), pp. 1105-1111
[56.]
D. Andes, W.A. Craog.
Pharmacodynamics of a new cephalosporin PPI-0903 (TAK-599), active against methicilin-resistant Staphylococcus aureus in murine thigh and lung infection models: identification of an in vivo pharmacokinetic-pharmacodynamic target.
Antimicrob Agents Chemother, 50 (2006), pp. 1376-1383
[57.]
H.S. Sader, T.R. Fritsche, K. Kaniga, Y. Ge, R.N. Jones.
Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains.
Antimicrob Agents Chemother, 49 (2005), pp. 3501-3512
[58.]
Jacqueline C, Caillon J, Miegeville A. Penetration of ceftaroline, a new cephalosporin into lung tissues: measurement of plasma and lung tissue concentrations after a short IV infusion in the rabbit. Abstract ICAAC 2006.
[59.]
S. Laohavaleeson, J. Kuti, D.P. Nicolau.
Telavancin: a novel lipoglycopeptide for serious gram-positive infections.
Expert Opin Investig Drugs, 16 (2007), pp. 347-357
[60.]
R.H. Drew.
Emerging options for treatment of invasive, multidrug-resistant Staphylococcus aureus infections.
Pharmacother, 27 (2007), pp. 227-249
[61.]
P. Schneider, S. Hawser, K. Islam.
Iclaprim, a novel diaminopyridime with potent activity on trimethoprim sensitive and resistant bacteria.
Bioorg Med Chem Lett, 13 (2003), pp. 4217-4221
[62.]
Krievens D, Leighton A, Brandt R, Hadvary P, Hawser S, Gillesen D, et al. Efficacy and safety of intravenous Iclaprim in complicated skin and skin structure infections: results of a phase 2 study. Abstract L-1579. Ontario: 3° ISGP; 2006.

Financiado por AGAUR (05/SGR/920), Fondo de Investigaciones Sanitarias (PI04/1500), CIBER Enfermedades Respiratorias (CIBERes 06/06/0036) y MARATOTV3.

Jordi Rello ha recibido becas de investigación de Novartis, Pfizer, Lilly, es consultor de Basilea, Merck & Co., Pfizer, Wyeth Aerst Pharmaceuticals, J & J, Arpida, Intercell, Novartis, Sanofi y speaker de Astra-Zeneca, Pfizer, Merck & Co. y Wyeth.

Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos