metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Resistencia a los antimicrobianos y virulencia bacteriana
Información de la revista
Vol. 23. Núm. 2.
Páginas 86-93 (febrero 2005)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 23. Núm. 2.
Páginas 86-93 (febrero 2005)
Revisión
Acceso a texto completo
Resistencia a los antimicrobianos y virulencia bacteriana
Antimicrobial resistance and bacterial virulence
Visitas
14575
Juan Francisco Linares-Rodríguez, José Luis Martínez-Menéndez
Autor para correspondencia
jlmtnez@cnb.uam.es

Correspondencia: Dr. J.L. Martínez-Menéndez. Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología. CSIC. Darwin, 3. Campus UAM. 28049 Madrid. España.
Departamento de Biotecnología Microbiana. Centro Nacional de Biotecnología. CSIC. Madrid. España
Este artículo ha recibido
Información del artículo

Los hospitales son lugares donde los antimicrobianos ejercen una alta presión selectiva. Por este motivo, las bacterias que producen infecciones hospitalarias necesitan ser no sólo virulentas, sino también resistentes a los antimicrobianos. En esta revisión analizamos el efecto que tiene la adquisición de un fenotipo de resistencia a los antimicrobianos sobre el fitness y la virulencia bacteriana. Además de ello, revisamos la existencia de mecanismos comunes a la virulencia bacteriana y a la resistencia a los antimicrobianos. En esta línea, se hace especial hincapié en el papel que tienen los sistemas de bombeo múltiple de drogas sobre la virulencia bacteriana. Dado que los patógenos oportunistas tienen con frecuencia un origen medioambiental, se discute también el papel que tienen los ecosistemas naturales, y su eventual contaminación, en la selección de bacterias resistentes a los antimicrobianos.

Palabras clave:
Antimicrobianos
Resistencia
Virulencia
Bombas de expulsión activa

Hospitals are places with high selective pressure by antimicrobial agents. For this reason, bacteria producing nosocomial infections need to be not only virulent, but also resistant to antimicrobial agents. In the present review we analyse the effect of the acquisition of an antibiotic resistance phenotype in bacterial fitness and virulence. Besides that, we review as well the existence of common mechanisms for resistance to antimicrobial agents and bacterial virulence. In this line, we highlight the role of multidrug efflux pumps on bacterial virulence. Since opportunistic pathogens frequently have an environmental origin, we also discuss the role of natural ecosystems, as well as their potential contamination, on the selection of bacteria resistant to antimicrobial agents.

Key words:
Antimicrobial agents
Resistance
Virulence
Efflux pumps
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.P. Quinn.
Clinical problems posed by multiresistant nonfermenting gramnegative pathogens.
Clin Infect Dis, 27 (1998), pp. S117-S124
[2.]
M.N. Swartz.
Hospital-acquired infections: diseases with increasingly limited therapies.
Proc Natl Acad Sci USA, 91 (1994), pp. 2420-2427
[3.]
S. Segal, A.V. Hill.
Genetic susceptibility to infectious disease.
Trends Microbiol, 11 (2003), pp. 445-448
[4.]
S.R. Palumbi.
Humans as the world's greatest evolutionary force.
Science, 293 (2001), pp. 1786-1790
[5.]
J.L. Martínez, F. Baquero.
Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance.
Clin Microbiol Rev, 15 (2002), pp. 647-679
[6.]
D.I. Andersson, B.R. Levin.
The biological cost of antibiotic resistance.
Curr Opin Microbiol, 2 (1999), pp. 489-493
[7.]
M.A. Beck, J. Handy, O.A. Levander.
Host nutritional status: the neglectedvirulence factor.
Trends Microbiol, 12 (2004), pp. 417-423
[8.]
J.L. Martínez, J. Blázquez, F. Baquero.
Non-canonical mechanisms of antibiotic resistance.
Eur J Clin Microbiol Infect Dis, 13 (1994), pp. 1015-1022
[9.]
D.M. Monack, J.A. Theriot.
Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake.
Cell Microbiol, 3 (2001), pp. 633-647
[10.]
C. Seral, F. Van Bambeke, P.M. Tulkens.
Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages.
Antimicrob Agents Chemother, 47 (2003), pp. 2283-2292
[11.]
M. Dargis, P. Gourde, D. Beauchamp, B. Foiry, M. Jacques, F. Malouin.
Modification in penicillin-binding proteins during in vivo development of genetic competence of Haemophilus influenzae is associated with a rapid change in the physiological state of cells.
Infect Immun, 60 (1992), pp. 4024-4031
[12.]
J. Barker, H. Scaife, M.R. Brown.
Intraphagocytic growth induces an antibiotic- resistant phenotype of Legionella pneumophila.
Antimicrob Agents Chemother, 39 (1995), pp. 2684-2688
[13.]
T.F. Mah, B. Pitts, B. Pellock, G.C. Walker, P.S. Stewart, G.A. O’Toole.
A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance.
Nature, 426 (2003), pp. 306-310
[14.]
G. Borriello, E. Werner, F. Roe, A.M. Kim, G.D. Ehrlich, P.S. Stewart.
Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms.
Antimicrob Agents Chemother, 48 (2004), pp. 2659-2664
[15.]
H. Ceri, M.E. Olson, C. Stremick, R.R. Read, D. Morck, A. Buret.
The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms.
J Clin Microbiol, 37 (1999), pp. 1771-1776
[16.]
X.Z. Li, H. Nikaido.
Efflux-mediated drug resistance in bacteria.
Drugs, 64 (2004), pp. 159-204
[17.]
D. Ma, D.N. Cook, M. Alberti, N.G. Pon, H. Nikaido, J.E. Hearst.
Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli.
Mol Microbiol, 16 (1995), pp. 45-55
[18.]
F.J. Lacroix, A. Cloeckaert, O. Grepinet, C. Pinault, M.Y. Popoff, H. Waxin, et al.
Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection.
FEMS Microbiol Lett, 135 (1996), pp. 161-167
[19.]
J. Lin, O. Sahin, L.O. Michel, Q. Zhang.
Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni.
Infect Immun, 71 (2003), pp. 4250-4259
[20.]
A.E. Jerse, N.D. Sharma, A.N. Simms, E.T. Crow, L.A. Snyder, W.M. Shafer.
A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection.
Infect Immun, 71 (2003), pp. 5576-5582
[21.]
E.H. Lee, W.M. Shafer.
The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids.
Mol Microbiol, 33 (1999), pp. 839-845
[22.]
R.S. Smith, B.H. Iglewski.
P. aeruginosa quorum-sensing systems and virulence.
Curr Opin Microbiol, 6 (2003), pp. 56-60
[23.]
T. Kohler, C. Van Delden, L.K. Curty, M.M. Hamzehpour, J.C. Pechere.
Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa.
J Bacteriol, 183 (2001), pp. 5213-5222
[24.]
K. Evans, L. Passador, R. Srikumar, E. Tsang, J. Nezezon, K. Poole.
Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa.
J Bacteriol, 180 (1998), pp. 5443-5447
[25.]
S. Aendekerk, B. Ghysels, P. Cornelis, C. Baysse.
Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium.
Microbiology, 148 (2002), pp. 2371-2381
[26.]
T.M. Barbosa, S.B. Levy.
Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA.
J Bacteriol, 182 (2000), pp. 3467-3474
[27.]
A. Alonso, P. Sánchez, J.L. Martínez.
Environmental selection of antibiotic resistance genes.
Environ Microbiol, 3 (2001), pp. 1-9
[28.]
V.I. Enne, D.M. Livermore, P. Stephens, L.M. Hall.
Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction.
Lancet, 357 (2001), pp. 1325-1328
[29.]
J.L. Martínez, F. Baquero.
Genetic linkage of antibiotic resistance and bacterial virulence.
APUA Newsletters, 6 (1988), pp. 1-3
[30.]
M.H. Kollef.
Is there a role for antibiotic cycling in the intensive care unit?.
Crit Care Med, 29 (2001), pp. N135-N142
[31.]
E. Giraud, A. Brisabois, J.L. Martel, E. Chaslus-Dancla.
Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fluoroquinolone-resistant strains in the field.
Antimicrob Agents Chemother, 43 (1999), pp. 2131-2137
[32.]
J. Bjorkman, I. Nagaev, O.G. Berg, D. Hughes, D.I. Andersson.
Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance.
Science, 287 (2000), pp. 1479-1482
[33.]
V.I. Enne, P.M. Bennett, D.M. Livermore, L.M. Hall.
Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure.
J Antimicrob Chemother, 53 (2004), pp. 958-963
[34.]
F.M. Aarestrup, A.M. Seyfarth, H.D. Emborg, K. Pedersen, R.S. Hendriksen, F. Bager.
Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark.
Antimicrob Agents Chemother, 45 (2001), pp. 2054-2059
[35.]
A. Alonso, G. Morales, R. Escalante, E. Campanario, L. Sastre, J.L. Martínez.
Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology.
J Antimicrob Chemother, 53 (2004), pp. 432-434
[36.]
P. Cosson, L. Zulianello, O. Join-Lambert, F. Faurisson, L. Gebbie, M. Benghezal, et al.
Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system.
J Bacteriol, 184 (2002), pp. 3027-3033
[37.]
P. Sánchez, J.F. Linares, B. Ruiz-Díez, E. Campanario, A. Navas, F. Baquero, et al.
Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants.
J Antimicrob Chemother, 50 (2002), pp. 657-664
[38.]
Y. Zhang, B. Heym, B. Allen, D. Young, S. Cole.
The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis.
Nature, 358 (1992), pp. 591-593
[39.]
Z. Li, C. Kelley, F. Collins, D. Rouse, S. Morris.
Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs.
J Infect Dis, 177 (1998), pp. 1030-1035
[40.]
A.S. Pym, B. Saint-Joanis, S.T. Cole.
Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans.
Infect Immun, 70 (2002), pp. 4955-4960
[41.]
D.R. Sherman, K. Mdluli, M.J. Hickey, T.M. Arain, S.L. Morris, C.E. Barry, et al.
Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis.
Science, 272 (1996), pp. 1641-1643
[42.]
D.J. Evans Jr, D.G. Evans.
Colonization factor antigens of human pathogens.
Curr Top Microbiol Immunol, 151 (1990), pp. 129-145
[43.]
J.L. Martínez, F. Baquero.
Mutation frequencies and antibiotic resistance.
Antimicrob Agents Chemother, 44 (2000), pp. 1771-1777
[44.]
J.E. Davies.
Origins, acquisition and dissemination of antibiotic resistance determinants.
Ciba Found Symp, 207 (1997), pp. 15-27
[45.]
A. Oliver, R. Cantón, P. Campo, F. Baquero, J. Blázquez.
High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection.
Science, 288 (2000), pp. 1251-1254
[46.]
A.A. Salyers, A. Gupta, Y. Wang.
Human intestinal bacteria as reservoirs for antibiotic resistance genes.
Trends Microbiol, 12 (2004), pp. 412-416
[47.]
A. Alonso, F. Rojo, J.L. Martínez.
Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin.
Environ Microbiol, 1 (1999), pp. 421-430
[48.]
M.I. Crisostomo, H. Westh, A. Tomasz, M. Cheng, D.C. Oliveira, H. De Lencastre.
The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones.
Proc Natl Acad Sci USA, 98 (2001), pp. 9865-9870
Copyright © 2005. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos