metricas
covid
Buscar en
Enfermería Clínica
Toda la web
Inicio Enfermería Clínica Comparing euclidean distance and nearest neighbor algorithm in an expert system ...
Información de la revista
Vol. 30. Núm. S2.
International Conference on Women and Societal Perspective on Quality of Life (WOSQUAL-2019)
Páginas 374-377 (marzo 2020)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 30. Núm. S2.
International Conference on Women and Societal Perspective on Quality of Life (WOSQUAL-2019)
Páginas 374-377 (marzo 2020)
Comparing euclidean distance and nearest neighbor algorithm in an expert system for diagnosis of diabetes mellitus
Reza Zubaedaha,
Autor para correspondencia
pmc@agri.unhas.ac.id

Corresponding author.
, Fransiskus Xaveriusa, Hasanudin Jayawardanaa, Serli Hatul Hidayatb
a Department of Information System, Faculty of Engineering, Musamus University, Merauke, Indonesia
b Universitas Hasanuddin, Makassar, Indonesia
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Abstract
Objective

Increasing sugar levels in the body which exceeds the normal limit is a metabolic disease commonly called diabetes mellitus. Long-term diabetes mellitus is one of the causes of other diseases such as liver, heart and other body organs. Early diagnosis of diabetes mellitus in a person is very important to know earlier. Early diagnosis is made to prevent other diseases to reduce the occurrence of complications in the body.

The use of existing cases can be compared to new cases to diagnose whether the patient has diabetes.

Methods

One method that can be used is a case-based expert system which is a reasoning system that uses old knowledge to be compared with new knowledge to overcome new problems. This case-based expert system provides a solution based on the similarity of new cases to existing cases. Some methods that can be used to do the similarity process are Euclidean distance and Nearest neighbor. Old cases taken are cases that have the highest similarity value. Result of the similarity value of a case is considered unsuccessful if it is diagnosed or the target case is <80, then the new case will be revised by the expert.

Results

The test results show that the system is able to recognize diabetes mellitus using the nearest neighbor similarity method, and Euclidean distance similarity with the calculation of accuracy using the euclidean distance similarity method is 93.33% and the nearest neighbor similarity method of 86.67%, So that the euclidean distance method is more effective because it has a higher accuracy value than the nearest neighbor method.

Keywords:
Diabetes mellitus
Euclidean distance
Nearest neighbor

Artículo

Opciones para acceder a los textos completos de la publicación Enfermería Clínica
Suscriptor
Suscriptor de la revista

Si ya tiene sus datos de acceso, clique aquí.

Si olvidó su clave de acceso puede recuperarla clicando aquí y seleccionando la opción "He olvidado mi contraseña".
Suscribirse
Suscribirse a:

Enfermería Clínica

Comprar
Comprar acceso al artículo

Comprando el artículo el PDF del mismo podrá ser descargado

Precio 19,34 €

Comprar ahora
Contactar
Teléfono para suscripciones e incidencias
De lunes a viernes de 9h a 18h (GMT+1) excepto los meses de julio y agosto que será de 9 a 15h
Llamadas desde España
932 415 960
Llamadas desde fuera de España
+34 932 415 960
E-mail
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos