Información de la revista
Vol. 27. Núm. 6.
Páginas 377-387 (enero 2004)
Vol. 27. Núm. 6.
Páginas 377-387 (enero 2004)
Acceso a texto completo
Componente funcional de la hipertensión portal
Visitas
8053
J.G. Abraldesa,
, J.C. García-Pagánb, J. Boschb
Autor para correspondencia
31679jgi@comb.es
Correspondencia: Dr. J.G. Abraldes. VA Healthcare System. Hepatic Hemodynamic Laboratory/111J. 950 Campbell Av. West Haven. CT 06516. United States.
Correspondencia: Dr. J.G. Abraldes. VA Healthcare System. Hepatic Hemodynamic Laboratory/111J. 950 Campbell Av. West Haven. CT 06516. United States.
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
Bibliografía
[1.]
Y. Shibayama, K. Nakata.
Localization of increased hepatic vascular resistance in liver cirrhosis.
Hepatology, 5 (1985), pp. 643-647
[2.]
G. Fernández-Varo, J. Ros, M. Morales-Ruiz, P. Cejudo-Martín, V. Arroyo, M. Sole, et al.
Nitric oxide synthase 3-dependent vascular remodeling and circulatory dysfunction in cirrhosis.
Am J Pathol, 162 (2003), pp. 1985-1993
[3.]
J. Bosch, J.C. García-Pagán.
Complications of cirrhosis. I. Portal hypertension.
J Hepatol, 32 (2000), pp. 141-156
[4.]
J. Goulis, D. Patch, A.K. Burroughs.
Bacterial infection in the pathogenesis of variceal bleeding.
Lancet, 353 (1999), pp. 139-142
[5.]
A. Follo, J.M. Llovet, M. Navasa, R. Planas, X. Forns, A. Francitorra, et al.
Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis.
Hepatology, 20 (1994), pp. 1495-1501
[6.]
J.C. García-Pagán, A. Escorsell, E. Moitinho, J. Bosch.
Influence of pharmacological agents on portal hemodynamics: basis for its use in the treatment of portal hypertension.
Semin Liver Dis, 19 (1999), pp. 427-438
[7.]
I.R. Wanless, E. Nakashima, M. Sherman.
Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis.
Arch Pathol Lab Med, 124 (2000), pp. 1599-1607
[8.]
E. Sikuler, R.J. Groszmann.
Interaction of flow and resistance in maintenance of portal hypertension in a rat model.
Am J Physiol, 250 (1986), pp. G205-G212
[9.]
J. Bosch, G. D'Amico, J.C. García-Pagán.
Portal hypertension.
Diseases of the liver 9th ed, pp. p429-p486
[10.]
I.R. Wanless, F. Wong, L.M. Blendis, P. Greig, E.J. Heathcote, G. Levy.
Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension.
Hepatology, 21 (1995), pp. 1238-1247
[11.]
P.S. Bathal, H.J. Grossmann.
Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators.
J Hepatol, 1 (1985), pp. 325-329
[12.]
J.X. Zhang, W. Pegoli Jr, M.G. Clemens.
Endothelin-1 induces direct constriction of hepatic sinusoids.
Am J Physiol Gastrointest Liver Physiol, 29 (1994), pp. G264-G632
[13.]
M. Pinzani, P. Gentilini.
Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis.
Semin Liver Dis, 19 (1999), pp. 397-410
[14.]
M. Pinzani, P. Failli, C. Ruocco, A. Casini, S. Milani, E. Baldi, et al.
Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients.
J Clin Invest, 90 (1992), pp. 642-646
[15.]
R. Bataller, P. Ginés, J.M. Nicolás, M.N. Gorbig, E. García-Ramallo, X. Gasull, et al.
Angiotensin II induces contraction and proliferation of human hepatic stellate cells.
Gastroenterology, 118 (2000), pp. 1149-1156
[16.]
R. Bataller, J.M. Nicolás, P. Ginés, A. Esteve, G.M. Nieves, E. García-Ramallo, et al.
Arginine vasopressin induces contraction and stimulates growth of cultured human hepatic stellate cells.
Gastroenterology, 113 (1997), pp. 615-624
[17.]
M.N. Gorbig, P. Ginés, R. Bataller, J.M. Nicolás, E. García-Ramallo, E. Tobias, et al.
Atrial natriuretic peptide antagonizes endothelin-induced calcium increase and cell contraction in cultured human hepatic stellate cells.
Hepatology, 30 (1999), pp. 501-509
[18.]
D.C. Rockey, R.A. Weisiger.
Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance.
Hepatology, 24 (1996), pp. 233-240
[19.]
N. Kawada, T.A. Tran-Thi, H. Klein, K. Decker.
The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus.
Eur J Biochem, 213 (1993), pp. 815-823
[20.]
M. Shiomi, Y. Wakabayashi, T. Sano, Y. Shinoda, Y. Nimura, Y. Ishimura, et al.
Nitric oxide suppression reversibly attenuates mitochondrial dysfunction and cholestasis in endotoxemic rat liver.
Hepatology, 27 (1998), pp. 108-115
[21.]
K. Kaneda, M. Sogawa, A. Matsumara, A. Cho, N. Kawada.
Endothelin-1 induced vasoconstriction causes a significant increase in portal pressure of rat liver: localized constrictive effect on the the distal segment of preterminal portal venules as revealed by light and electron microscopy and serial reconstruction.
Hepatology, 27 (1998), pp. 735-747
[22.]
M.R. Loureiro-Silva, G.W. Cadelina, R.J. Groszmann.
Deficit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas.
Am J Physiol Gastrointest Liver Physiol, 284 (2003), pp. G567-G574
[23.]
V. Shah, F.G. Haddad, G. García-Cardena, J.A. Frangos, A. Mennone, R.J. Groszmann, et al.
Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids.
J Clin Invest, 100 (1997), pp. 2923-2930
[25.]
T.K. Gupta, M. Toruner, M.K. Chung, R.J. Groszmann.
Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats.
Hepatology, 28 (1998), pp. 926-931
[26.]
D.C. Rockey, J.J. Chung.
Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension.
Gastroenterology, 114 (1998), pp. 344-351
[27.]
V. Shah, M. Toruner, F. Haddad, G. Cadelina, A. Papapetropoulos, K. Choo, et al.
Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat.
Gastroenterology, 117 (1999), pp. 1222-1228
[28.]
V. Shah, S. Cao, H. Hendrickson, J. Yao, Z.S. Katusic.
Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats.
Am J Physiol Gastrointest Liver Physiol, 280 (2001), pp. G1209-G1216
[29.]
R. Wiest, R.J. Groszmann.
The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough.
Hepatology, 35 (2002), pp. 478-491
[30.]
L. Bellis, A. Berzigotti, J.G. Abraldes, E. Moitinho, J.C. García-Pagán, J. Bosch, et al.
Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosis.
Hepatology, 37 (2003), pp. 378-384
[31.]
C.M. Van de, A. Omasta, S. Janssens, T. Roskams, V. Desmet, F. Nevens, et al.
In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats.
Gut, 51 (2002), pp. 440-445
[32.]
D. Fulton, J.P. Gratton, W.C. Sessa.
Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough?.
J Pharmacol Exp Ther, 299 (2001), pp. 818-824
[33.]
H. Yokomori, M. Oda, M. Ogi, K. Sakai, H. Ishii.
Enhanced expression of endothelial nitric oxide synthase and caveolin-1 in human cirrhosis.
Liver, 22 (2002), pp. 150-158
[34.]
M. Morales-Ruiz, P. Cejudo-Martín, G. Fernández-Varo, S. Tugues, J. Ros, P. Angeli, et al.
Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats.
Gastroenterology, 125 (2003), pp. 522-531
[35.]
A.A. Dudenhoefer, M.R. Loureiro-Silva, G.W. Cadelina, T. Gupta, R.J. Groszmann.
Bioactivation of nitroglycerin and vasomotor response to nitric oxide are impaired in cirrhotic rat livers.
Hepatology, 36 (2002), pp. 381-385
[36.]
C.M. Van De, J.F. Van Pelt, F. Nevens, J. Fevery, J. Reichen.
Low NO bioavailability in CCl4 cirrhotic rat livers might result from low NO synthesis combined with decreased superoxide dismutase activity allowing superoxide-mediated NO breakdown: a comparison of two portal hypertensive rat models with healthy controls.
Comp Hepatol, 2 (2003), pp. 2
[37.]
S. Fiorucci, E. Antonelli, O. Morelli, A. Mencarelli, A. Casini, T. Mello, et al.
NCX-1000, a NO-releasing derivative of ursodeoxycholic acid, selectively delivers NO to the liver and protects against development of portal hypertension.
Proc Natl Acad Sci U S A, 98 (2001), pp. 8897-8902
[38.]
Q. Yu, R. Shao, H.S. Qian, S.E. George, D.C. Rockey.
Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension.
J Clin Invest, 105 (2000), pp. 741-748
[39.]
J.C. García-Pagán, F. Feu, M. Navasa, C. Bru, A. Ruiz, J. Bosch, et al.
Long-term haemodynamic effects of isosorbide 5-mononitrate in patients with cirrhosis and portal hypertension.
J Hepatol, 11 (1990), pp. 189-195
[40.]
J.M. Salmerón, A. Ruiz, A. Ginés, J.C. García-Pagán, P. Ginés, F. Feu, et al.
Renal effects of acute isosorbide-5-mononitrate administration in cirrhosis.
Hepatology, 17 (1993), pp. 800-806
[41.]
J.C. García-Pagán, C. Villanueva, M.C. Vila, A. Albillos, J. Genesca, L. Ruiz-del-Árbol, et al.
Isosorbide mononitrate in the prevention of first variceal bleed in patients who cannot receive beta-blockers.
Gastroenterology, 121 (2001), pp. 908-914
[42.]
M.R. Loureiro-Silva, G. Cadelina, Y. Iwakiri, R.J. Groszmann.
A liver-specific nitric oxide donor improves the intra-hepatic vascular response to both portal blood flow increase and methoxamine in cirrhotic rats.
J Hepatol, 39 (2003), pp. 940-946
[43.]
C. Zafra, J.G. Abraldes, C. Cortez, A. Berzigotti, I. Tarantino, J.C. García-Pagán.
Simvastatin ammeliorates the increased hepatic vascular tone in patients with cirrhosis.
J Hepatol, 38 (2003), pp. 12A
[44.]
M. Suematsu, N. Goda, T. Sano, S. Kashiwagi, T. Egawa, Y. Shinoda, et al.
Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver.
J Clin Invest, 96 (1995), pp. 2431-2437
[45.]
Y. Wakabayashi, R. Takamiya, A. Mizuki, T. Kyokane, N. Goda, T. Yamaguchi, et al.
Carbon monoxide overproduced by heme oxygenase-1 causes a reduction of vascular resistance in perfused rat liver.
Am J Physiol, 277 (1999), pp. G1088-G1096
[46.]
N. Makino, M. Suematsu, Y. Sugiura, H. Morikawa, S. Shiomi, N. Goda, et al.
Altered expression of heme oxygenase-1 in the livers of patients with portal hypertensive diseases.
Hepatology, 33 (2001), pp. 32-42
[47.]
F. Ballet, Y. Chretien, C. Rey, R. Poupon.
Differential response of normal and cirrhotic liver to vasoactive agents. A study in the isolated perfused rat liver.
J Pharmaco Exp Ther, 244 (1988), pp. 233-235
[48.]
M. Graupera, J.C. García-Pagán, J.G. Abraldes, C. Peralta, M. Bragulat, H. Corominola, et al.
Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers.
Hepatology, 37 (2003), pp. 172-181
[49.]
M. Graupera, J.C. García-Pagán, J. González-Abraldes, J. Bosch, J. Rodes.
Cirrhotic livers exhibit a hyperresponse to methoxamine. Role of nitric oxide and eicosanoids.
J Hepatol, 34 (2001), pp. 66A
[50.]
E. Titos, J. Claria, R. Bataller, M. Bosch-Marce, P. Ginés, W. Jiménez, et al.
Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis.
Gastroenterology, 119 (2000), pp. 794-805
[51.]
M. Pinzani, S. Milani, R. De Franco, C. Grappone, A. Caligiuri, A. Gentilini, et al.
Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells.
Gastroenterology, 110 (1996), pp. 534-548
[52.]
S. Moller, V. Gulberg, J.H. Henriksen, A.L. Gerbes.
Endothelin-1 and endothelin-3 in cirrhosis: relations to systemic and splanchnic haemodynamics.
J Hepatol, 23 (1995), pp. 135-144
[53.]
J. Bosch, V. Arroyo, A. Betriu, A. Mas, F. Carrilho, F. Rivera, et al.
Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis.
Gastroenterology, 78 (1980), pp. 92-99
[54.]
V. Arroyo, R. Planas, J. Gaya, R. Deulofeu, A. Rimola, R.M. Pérez-Ayuso, et al.
Sympathetic nervous activity, renin-angiotensin system and renal excretion of prostaglandin E2 in cirrhosis. Relationship to functional renal failure and sodium and water excretion.
Eur J Clin Invest, 13 (1983), pp. 271-278
[55.]
H.J. Grossman, V.L. Grossman, P.S. Bhathal.
Enhanced vasoconstrictor response of the isolated perfused cirrhotic rat liver to humoral vasoconstrictor substances found in portal venous blood.
J Gastroenterol Hepatol, 7 (1992), pp. 283-287
[56.]
M. Graupera, J.C. García-Pagán, E. Titos, J. Claria, A. Massaguer, J. Bosch, et al.
5-lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes.
Gastroenterology, 122 (2002), pp. 387-393
[57.]
M. Graupera, J.C. García-Pagán, M. Parés, J.G. Abraldes, J. Rosello, J. Bosch, et al.
Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers.
J Hepatol, 39 (2003), pp. 515-521
[58.]
M. Asbert, A. Ginés, P. Ginés, W. Jiménez, J. Claria, J. Saló, et al.
Circulating levels of endothelin in cirrhosis.
Gastroenterology, 104 (1993), pp. 1485-1491
[59.]
A.J. Elliot, L.T. Vo, V.L. Grossman, P.S. Bhathal, H.J. Grossman.
Endothelin-induced vasoconstriction in isolated perfused liver preparations from normal and cirrhotic rats.
J Gastroenterol Hepatol, 12 (1997), pp. 314-318
[60.]
M. Clozel, G.A. Gray, V. Breu, B.M. Loffler, R. Osterwalder.
The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo.
Biochem Biophys Res Commun, 186 (1992), pp. 867-873
[61.]
J. Reichen, A.L. Gerbes, M.J. Steiner, H. Sagesser, M. Clozel.
The effect of endothelin and its antagonist bosentan on hemodynamics and microvascular exchange in cirrhotic rat liver.
J Hepatol, 28 (1998), pp. 1020-1030
[62.]
P. Sogni, R. Moreau, A. Gomola, A. Gadano, S. Cailmail, Y. Calmus, et al.
Beneficial hemodynamic effects of bosentan, a mixed ET(A) and ET(B) receptor antagonist, in portal hypertensive rats.
Hepatology, 28 (1998), pp. 655-659
[63.]
J.L. Poo, W. Jiménez, M.R. María, M. Bosch-Marce, N. Bordas, M. Morales-Ruiz, et al.
Chronic blockade of endothelin receptors in cirrhotic rats: hepatic and hemodynamic effects.
Gastroenterology, 116 (1999), pp. 161-167
[64.]
J.J. Cho, B. Hocher, H. Herbst, J.D. Jia, M. Ruehl, E.G. Hahn, et al.
An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis.
Gastroenterology, 118 (2000), pp. 1169-1178
[65.]
H. Kojima, S. Sakurai, S. Kuriyama, H. Yoshiji, H. Imazu, M. Uemura, et al.
Endothelin-1 plays a major role in portal hypertension of biliary cirrhotic rats through endothelin receptor subtype B together with subtype A in vivo.
J Hepatol, 34 (2001), pp. 805-811
[66.]
N. Segel, T.J. Bayley, A. Paton, et al.
The effects of synthetic vasopressin and angiotensin on the circulation in cirrhosis of the liver.
Clin Sci, 25 (1963), pp. 43-55
[67.]
R. Bataller, P. Sancho-Bru, P. Ginés, J.M. Lora, A. Al Garawi, M. Solé, et al.
Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II.
Gastroenterology, 125 (2003), pp. 117-125
[68.]
R.W. Schrier, V. Arroyo, M. Bernardi, M. Epstein, J.H. Henriksen, J. Rodes.
Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis.
Hepatology, 8 (1988), pp. 1151-1157
[69.]
J. González-Abraldes, A. Albillos, R. Banares, L.R. Del Árbol, E. Moitinho, C. Rodríguez, et al.
Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis.
Gastroenterology, 121 (2001), pp. 382-388
[70.]
M. Schepke, E. Werner, E. Biecker, P. Schiedermaier, J. Heller, M. Neef, et al.
Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension.
Gastroenterology, 121 (2001), pp. 389-395
[71.]
E. Titos, J. Claria, A. Planaguma, M. López-Parra, N. Villamor, M. Parrizas, et al.
Inhibition of 5-lipoxygenase induces cell growth arrest and apoptosis in rat Kupffer cells: implications for liver fibrosis.
FASEB J, 17 (2003), pp. 1745-1747
[72.]
A. Albillos, J.L. Lledó, R. Banares, I. Rossi, J. Iborra, J.L. Calleja, et al.
Hemodynamic effects of alpha-adrenergic blockade with prazosin in cirrhotic patients with portal hypertension.
Hepatology, 20 (1994), pp. 611-617
[73.]
A. Albillos, J.L. Lledó, I. Rossi, M. Pérez-Paramo, M.J. Tabuenca, R. Banares, et al.
Continuous prazosin administration in cirrhotic patients: effects on portal hemodynamics and on liver and renal function.
Gastroenterology, 109 (1995), pp. 1257-1265
[74.]
L.T. Sumanovski, E. Battegay, M. Stumm, K.M. Van der, C.C. Sieber.
Increased angiogenesis in portal hypertensive rats: role of nitric oxide.
Hepatology, 29 (1999), pp. 1044-1049
[75.]
C.C. Sieber, L.T. Sumanovski, M. Stumm, K.M. Van der, E. Battegay.
In vivo angiogenesis in normal and portal hypertensive rats: role of basic fibroblast growth factor and nitric oxide.
J Hepatol, 34 (2001), pp. 644-650
[76.]
M. Chojkier, R.J. Groszmann.
Measurement of portal-systemic shunting in the rat by using gamma-labeled microspheres.
Am J Physiol, 240 (1981), pp. G371-G375
[77.]
P. Mosca, F.Y. Lee, A.J. Kaumann, R.J. Groszmann.
Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium.
Am J Physiol, 263 (1992), pp. G544-G550
[78.]
C.C. Chan, F.Y. Lee, S.S. Wang, F.Y. Chang, H.C. Lin, C.J. Chu, et al.
Effects of vasopressin on portal-systemic collaterals in portal hypertensive rats: role of nitric oxide and prostaglandin.
Hepatology, 30 (1999), pp. 630-635
[79.]
C.C. Chan, S.S. Wang, F.Y. Lee, F.Y. Chang, H.C. Lin, C.J. Chu, et al.
Endothelin-1 induces vasoconstriction on portal-systemic collaterals of portal hypertensive rats.
Hepatology, 33 (2001), pp. 816-820
[80.]
H.C. Huang, F.Y. Lee, C.C. Chan, F.Y. Chang, S.S. Wang, H.C. Lin, et al.
Effects of somatostatin and octreotide on portal-systemic collaterals in portal hypertensive rats.
J Hepatol, 36 (2002), pp. 163-168
[81.]
R.J. Kroeger, R.J. Groszmann.
Increased portal venous resistance hinders portal pressure reduction during the administration of beta-adrenergic blocking agents in a portal hypertensive model.
Hepatology, 5 (1985), pp. 97-101
[82.]
H.J. Kowalski, W.H. Abelman.
The cardiac output at rest in Laennec cirrhosis.
J Clin Invest, 32 (1953), pp. 1025-1033
[83.]
A. Reuben.
The way to a man's heart is through his liver.
Hepatology, 37 (2003), pp. 1500-1502
[84.]
D. Lebrec, C. Bataille, E. Bercoff, D. Valla.
Hemodynamic changes in patients with portal venous obstruction.
Hepatology, 3 (1983), pp. 550-553
[85.]
C. Denie, F. Vachiery, A. Elman, T. Soupison, A. Gadano, R. Moreau, et al.
Systemic and splanchnic hemodynamic changes in patients with hepatic schistosomiasis.
Liver, 16 (1996), pp. 309-312
[86.]
J. Vorobioff, J. Bredfeldt, R.J. Groszmann.
Hyperdynamic circulation in a portal hypertensive rat model: a primary factor for maintenance of chronic portal hypertension.
Am J Physiol, 244 (1983), pp. G52-G56
[87.]
J. Vorobioff, J.E. Bredfeldt, R.J. Grossmann.
Increased blood flow through the portal system in cirrhotic rats.
Gastroenterology, 87 (1984), pp. 1120-1123
[88.]
R.J. Grossmann.
Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences [editorial].
Hepatology, 20 (1994), pp. 1359-1363
[89.]
J.N. Benoit, J.A. Barrowman, S.L. Harper, P.R. Kvietys, D.N. Granger.
Role of humoral factors in the intestinal hyperemia associated with chronic portal hypertension.
Am J Physiol, 247 (1984), pp. G486-G493
[90.]
J.N. Benoit, D.N. Granger.
Splanchnic hemodynamics in chronic portal hypertension.
Semin Liver Dis, 6 (1986), pp. 287-298
[91.]
R. Gomis, J. Fernández-Álvarez, P. Pizcueta, M. Fernández, R. Casamitjana, J. Bosch, et al.
Impaired function of pancreatic islets from rats with portal hypertension resulting from cirrhosis and partial portal vein ligation.
Hepatology, 19 (1994), pp. 1257-1261
[92.]
J.N. Benoit, B. Zimmerman, A.J. Premen, V.L. Go, D.N. Granger.
Role of glucagon in splanchnic hyperemia of chronic portal hypertension.
Am J Physiol, 251 (1986), pp. G674-G677
[93.]
D. Kravetz, J. Bosch, M.T. Arderiu, M.P. Pizcueta, R. Casamitjana, F. Rivera, et al.
Effects of somatostatin on splanchnic hemodynamics and plasma glucagon in portal hypertensive rats.
Am J Physiol, 254 (1988), pp. G322-G328
[94.]
M.P. Pizcueta, J.C. García-Pagán, M. Fernández, R. Casamitjana, J. Bosch, J. Rodés.
Glucagon hinders the effects of somatostatin on portal hypertension. A study in rats with partial portal vein ligation.
Gastroenterology, 101 (1991), pp. 1710-1715
[95.]
A. Albillos, I. Rossi, J. Iborra, J.L. Lledó, J.L. Calleja, C. Barrios, et al.
Octreotide prevents postprandial splanchnic hyperemia in patients with portal hypertension.
J Hepatol, 21 (1994), pp. 88-94
[96.]
J.G. Abraldes, J. Bosch.
Somatostatin and analogues in portal hypertension.
Hepatology, 35 (2002), pp. 1305-1312
[97.]
R. Wiest, M.H. Tsai, R.J. Groszmann.
Octreotide potentiates PKC-dependent vasoconstrictors in portal-hypertensive and control rats.
Gastroenterology, 120 (2001), pp. 975-983
[98.]
P. Vallance, S. Moncada.
Hyperdynamic circulation in cirrhosis: a role for nitric oxide?.
Lancet, 337 (1991), pp. 776
[99.]
C. Guarner, G. Soriano, A. Tomás, O. Bulbena, M.T. Novella, J. Balanzo, et al.
Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia.
Hepatology, 18 (1993), pp. 1139-1143
[100.]
S. Battista, F. Bar, G. Mengozzi, E. Zanon, M. Grosso, G. Molino.
Hyperdynamic circulation in patients with cirrhosis: direct measurement of nitric oxide levels in hepatic and portal veins.
J Hepatol, 26 (1997), pp. 75-80
[101.]
N. Hori, R. Wiest.
Enhanced relaease of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats.
Hepatology, 28 (1998), pp. 1467-1473
[102.]
C.C. Sieber, R.J. Groszmann.
Nitric oxide mediates hyporeactivity to vasopressors in mesenteric vessels of portal hypertensive rats.
Gastroenterology, 103 (1992), pp. 235-239
[103.]
P. Pizcueta, J.M. Piqué, M. Fernández, J. Bosch, J. Rodés, B.J.R. Whittle, et al.
Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition.
Gastroenterology, 103 (1992), pp. 1909-1915
[104.]
M.P. Pizcueta, J.M. Piqué, J. Bosch, B.J.R. Whittle, S. Moncada.
Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension.
Br J Pharmacol, 105 (1992), pp. 105-184
[105.]
F.Y. Lee, L.A. Colombato, A. Albillos, R.J. Groszmann.
Administration of N omega-nitro-L-arginine ameliorates portal-systemic shunting in portal-hypertensive rats.
Gastroenterology, 105 (1993), pp. 1464-1470
[106.]
J.C. García-Pagán, M. Fernández, C. Bernadich, P. Pizcueta, J.M. Piqué, J. Bosch, et al.
Effects of continued nitric oxide inhibition on the development of the portal hypertensive syndrome following portal vein stenosis in the rat.
Am J Physiol, 30 (1994), pp. 984-990
[107.]
Y. Iwakiri, G. Cadelina, W.C. Sessa, R.J. Groszmann.
Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension.
Am J Physiol Gastrointest Liver Physiol, 283 (2002), pp. G1074-G1081
[108.]
Y. Iwakiri, M.H. Tsai, T.J. McCabe, J.P. Gratton, D. Fulton, R.J. Groszmann, et al.
Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension.
Am J Physiol Heart Circ Physiol, 282 (2002), pp. H2084-H2090
[109.]
M. Fernández, J.C. García-Pagán, M. Casadevall, C. Bernadich, C. Piera, B.J. Whittle, et al.
Evidence against a role for inducible nitric oxide synthase in the hyperdynamic circulation of portal-hypertensive rats.
Gastroenterology, 108 (1995), pp. 1487-1495
[110.]
P.Y. Martin, D.L. Xu, M. Niederberger, A. Weigert, P. Tsai, J. St John, et al.
Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats.
Am J Physiol, 270 (1996), pp. F494-F499
[111.]
R. Wiest, S. Das, G. Cadelina, G. García-Tsao, S. Milstien, R.J. Groszmann.
Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility.
J Clin Invest, 104 (1999), pp. 1223-1233
[112.]
V. Shah, R. Wiest, G. García-Cardena, G. Cadelina, R.J. Groszmann, W.C. Sessa.
Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension.
Am J Physiol, 277 (1999), pp. G463-G468
[113.]
R. Wiest, V. Shah, W.C. Sessa, R.J. Groszmann.
NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats.
Am J Physiol, 276 (1999), pp. G1043-G1051
[114.]
M.H. Tsai, Y. Iwakiri, G. Cadelina, W.C. Sessa, R.J. Groszmann.
Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats.
Gastroenterology, 125 (2003), pp. 1452-1461
[115.]
A. Albillos, A. De la Hera, M. González, J.L. Moya, J.L. Calleja, J. Monserrat, et al.
Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement.
Hepatology, 37 (2003), pp. 208-217
[116.]
C. Bernadich, J.C. Bandi, C. Piera, J. Bosch, J. Rodés.
Circulatory effects of graded diversion of portal blood flow to the systemic circulation in rats: role of nitric oxide.
Hepatology, 26 (1997), pp. 262-267
[117.]
J.C. Bandi, M. Fernández, C. Bernadich, A.M. De Lacy, J.C. García-Pagán, J. Bosch, et al.
Hyperkinetic circulation and decreased sensitivity to vasoconstrictors following portacaval shunt in the rat. Effects of chronic nitric oxide inhibition.
J Hepatol, 31 (1999), pp. 719-724
[118.]
G. La Villa, G. Barletta, P. Pantaleo, R. Del Bene, F. Vizzutti, S. Vecchiarino, et al.
Hemodynamic, renal, and endocrine effects of acute inhibition of nitric oxide synthase in compensated cirrhosis.
Hepatology, 34 (2001), pp. 19-27
[119.]
E.H. Forrest, A.L. Jones, J.F. Dillon, J. Walker, P.C. Hayes.
The effect of nitric oxide synthase inhibition on portal pressure and azygos blood flow in patients with cirrhosis.
J Hepatol, 23 (1995), pp. 254-258
[120.]
J.V. Sitzmann, G.B. Bulkley.
Role of prostacyclin in the splanchnic hyperemia contributing to portal hypertension.
Ann Surg, 209 (1989), pp. 322-327
[121.]
C. Guarner, G. Soriano, J. Such, M. Teixidó, I. Ramis, O. Bulbena, et al.
Systemic prostacyclin in cirrhotic patients. Relationship with portal hypertension and changes after intestinal decontamination [véanse comentarios].
Gastroenterology, 102 (1992), pp. 303-309
[122.]
M.A. Potenza, O.A. Botrugno, M.A. De Salvia, G. Lerro, C. Nacci, F.L. Marasciulo, et al.
Endothelial COX-1 and -2 differentially affect reactivity of MVB in portal hypertensive rats.
Am J Physiol Gastrointest Liver Physiol, 283 (2002), pp. G587-G594
[123.]
M. Fernández, J.C. García-Pagán, M. Casadevall, M. Mourelle, J.M. Pique, J. Bosch, et al.
Acute and chronic cyclooxygenase blockade in portal hypertensive rats. Influence on nitric oxide biosynthesis.
Gastroenterology, 110 (1996), pp. 1529-1535
[124.]
M.C. Hou, P.A. Cahill, S. Zhang, Y.N. Wang, R.J. Hendrickson, E.M. Redmond, et al.
Enhanced cyclooxygenase-1 expression within the superior mesenteric artery of portal hypertensive rats: role in the hyperdynamic circulation.
Hepatology, 27 (1998), pp. 20-27
[125.]
J. Bruix, J. Bosch, D. Kravetz, R. Mastai, J. Rodés.
Effects of prostaglandin inhibition on systemic and hepatic hemodynamics in patients with cirrhosis of the liver.
Gastroenterology, 88 (1985), pp. 430-435
[126.]
M. Fernández, H.L. Bonkovsky.
Increased heme oxygenase-1 gene expression in liver cells and splanchnic organs from portal hypertensive rats.
Hepatology, 29 (1999), pp. 1672-1679
[127.]
M. Fernández, R.W. Lambrecht, H.L. Bonkovsky.
Increased heme oxygenase activity in splanchnic organs from portal hypertensive rats: role in modulating mesenteric vascular reactivity.
J Hepatol, 34 (2001), pp. 812-817
[128.]
S. Batkai, Z. Jarai, J.A. Wagner, S.K. Goparaju, K. Varga, J. Liu, et al.
Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis.
Nat Med, 7 (2001), pp. 827-832
[129.]
J. Ros, J. Claria, J. To-Figueras, A. Planaguma, P. Cejudo-Martón, G. Fernández-Varo, et al.
Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat.
Gastroenterology, 122 (2002), pp. 85-93
[130.]
K. Varga, J.A. Wagner, D.T. Bridgen, G. Kunos.
Platelet-and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension.
FASEB J, 12 (1998), pp. 1035-1044
[131.]
P. Ginés, P.Y. Martín, M. Niederberger.
Prognostic significance of renal dysfunction in cirrhosis.
Kidney Int Suppl, 61 (1997), pp. S77-S82
[132.]
P. Genecin, J. Polio, R.J. Groszmann.
Na restriction blunts expansion of plasma volume and ameliorates hyperdynamic circulation in portal hypertension.
Am J Physiol, 259 (1990), pp. G498-G503
[133.]
J.C. García-Pagán, J.M. Salmerón, F. Feu, A. Luca, P. Ginés, P. Pizcueta, et al.
Effects of low-sodium diet and spironolactone on portal pressure in patients with compensated cirrhosis.
Hepatology, 19 (1994), pp. 1095-1099
[134.]
A. Albillos, L.A. Colombato, R.J. Groszmann.
Vasodilatation and sodium retention in prehepatic portal hypertension [véanse comentarios].
Gastroenterology, 102 (1992), pp. 931-935
Copyright © 2004. Elsevier España, S.L.. Todos los derechos reservados