covid
Buscar en
Infectio
Toda la web
Inicio Infectio Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondi...
Información de la revista
Vol. 15. Núm. 1.
Páginas 20-24 (marzo 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 15. Núm. 1.
Páginas 20-24 (marzo 2011)
Open Access
Análisis del perfil proteico de aislamientos clínicos de Candida guilliermondii sensibles y resistentes al fluconazol
Protein profile analysis of Candida guilliermondii clinical isolates sensitive and resistant to fluconazole
Visitas
3907
Salvador Gómez1, Sandra Milena García2, Catalina de Bedout3, Ana María García4,
Autor para correspondencia
agarcia@cib.org.co

Correspondencia: Carrera 72A N° 78B-141, Medellín, Colombia. Teléfono: (574) 4035950, extensión 231.
1 Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
2 Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, D.C., Colombia
3 Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, CIB, Medellín, Colombia
4 Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas, CIB, Medellín, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Objetivo

El objetivo del estudio fue identificar posibles cambios en el perfil proteico de dos aislamientos clínicos de Candida guilliermondii, uno sensible y otro resistente al fluconazol, con el fin de discriminar las proteínas expresadas diferencialmente en relación con la resistencia a este antifúngico.

Métodos

Se aislaron fracciones procedentes de extractos proteicos citoplásmicos y de membrana o pared de un aislamiento resistente (CIM >256) y de otro sensible (CIM=4) al fluconazol, analizándolos por electroforesis en gel de poliacrilamida (SDS-PAGE).

Resultados

Se identificaron cuatro bandas proteicas presentes en el aislamiento resistente al fluconazol y ausentes en el aislamiento sensible. En el extracto citoplásmico se encontraron tres proteínas, una de 16kDa, de igual peso molecular a YNK1p (nucleósido difosfato cinasa), otra de 37kDa de igual peso molecular a HEM13p (coproporfirinógeno III oxidasa) y a ADHp1 (alcohol deshidrogenasa) y una de 45kDa. En el extracto de membrana o pared se encontró una banda de 25kDa con peso molecular similar al de la HSP31p (cisteína proteasa).

Discusión

Este es el primer estudio de análisis proteico de la resistencia al fluconazol realizado con C. guilliermondii. Se identificaron algunas proteínas posiblemente asociadas con la resistencia a este azol, y se detectaron cuatro bandas expresadas diferencialmente en el aislamiento resistente, tres de ellas correspondientes a proteínas identificadas previamente en otras especies de Candida como relacionadas a resistencia y, la cuarta, una proteína de 45kDa, no descrita previamente en otros estudios proteómicos realizados en este género; sin embargo, los estudios del análisis del perfil proteico de C. guilliermondii deben continuarse, desarrollando técnicas proteómicas más avanzadas y específicas, como el uso de 2D-DIGE y de espectrometría de masas.

Palabras clave:
Candida
fluconazol
agente antifúngico
proteínas
electroforesis
SDS-PAGE
Abstract
Objectives

The aim of this study was to identify possible changes in the protein profiles of two isolates of Candida guilliermondii, one sensitive and other resistant to fluconazole to recognize proteins differentially expressed in relation to the resistance to this antimycotic.

Methods

For this purpose, fractions from cytoplasm and membrane bound protein extracts from one resistant (MIC>256) and another sensitive (MIC=4) isolates were obtained and analyzed by SDS-PAGE.

Results

Four protein bands present in the resistant isolation and absent in the sensitive isolate were identified. In the cytoplasmic extract three proteins were identified, one of 16kDa with the same size to YNK1p (Nucleoside diphosphate kinase), other of 37kDa with similar size to HEM13p (Coproporphyrinogen III oxidase) and/or ADHp1 (Alcohol Dehydrogenase) and the last of 45kDa was not identified previously in other proteomic studies made with other Candida species. In the membrane extract, one band corresponding to 25kDa protein HSP31p (Cysteine protease) was found.

Conclusion

This is the first protein analysis study made in C. guilliermondii in which proteins potentially associated with resistance to fluconazole were found. In this research, four proteins bands differentially expressed and possibly associated to fluconazol resistance were identified. Three of these proteins, were previously described in other Candida species as related to azole resistance. The 45 kDa, hasn’t been previously reported in other proteomic studies and could be specific to this species. Despite these results, further studies should be conducted on the protein profile of C. guilliermondii using more advanced and specific proteomic techniques as 2D-DIGE and mass spectrometry.

Key words:
Candida
fluconazole
Antifungal Agents
proteins
electrophoresis
SDS-PAGE
El Texto completo está disponible en PDF
Referencias
[1.]
J.L. Finquelievich.
Candidiasis.
Enfermedades infecciosas, Sexta edición, pp. 268-274
[2.]
L. Marodi.
Local systemic host defense mechanisms against Candida: Immunopathology of candidal infections.
Pediatr Infect Dis J, 1 (1997), pp. 795-801
[3.]
M.K. Hostetter.
An integrin-like protein in Candida albicans: Implications for pathogenesis.
Trends Microbiol, 4 (1996), pp. 242-246
[4.]
C. Franklin, M. Metry.
Life-threatening Candida infections in the intensive care unit.
J Intensive Care Med, 7 (1992), pp. 127-137
[5.]
J.E. Edwards.
Invasive Candida infections evolution of a fungal pathogen.
N Engl J Med, 11 (1991), pp. 1060-1062
[6.]
N. Cardona, et al.
Género Candida.
Microbiología de las infecciones humanas, pp. 657-665
[7.]
M.A. Pfaller, D.J. Diekema, D.L. Gibbs, V.A. Newell, D. Ellis, V. Tullio, et al.
Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion.
J Clin Microbiol, 48 (2010), pp. 1366-1377
[8.]
C. Caro.
Pfizer, (2008),
[9.]
A. Zuluaga, C. de Bedout, C.A. Agudelo, H. Hurtado, M. Arango, A. Restrepo, et al.
Sensibilidad a fluconazol y voriconazol de species de Candida aisladas de pacientes provenientes de unidades de cuidados intensivos en Medellín Colombia (2001-2007).
Rev Iberoam Micol, 27 (2010), pp. 125-129
[10.]
P.G. Pappas, C.A. Kauffman, D. Andes, D.K. Benjamin Jr., T.F. Calandra, J.E. Edwards, et al.
Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America Clinical Infectious Diseases.
Clin Infect Dis, 48 (2009), pp. 503-535
[11.]
M. Pfaller, D. Diekema, M. Méndez, C. Kibbler, P. Erzsebet, S. Chang, et al.
Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: Geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program.
J Clin Microbiol, 44 (2006), pp. 3551-3556
[12.]
Z. Massoumeh, K. Barker, M.Z. Hooshdaran, G.M. Hilliard, H. Kusch, P.D. Rogers.
Proteomic analysis of azole resistance in Candida albicans clinical isolates.
Antimicrob Agents Chemother, 48 (2004), pp. 2733-2735
[13.]
N. Berila, S. Borecka, V. Dzugasova, J. Bojnansky, J. Subik.
Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.
Int J Antimicrob Agents, 33 (2009), pp. 574-578
[14.]
P.D. Rogers, J. Vermitsky, T. Edlind, G. Hilliard.
Proteomic analysis of experimentally induced azole resistance in Candida glabrata.
J Antimicrob Chemother, 58 (2006), pp. 434-438
[15.]
M. Niimi, Y. Nagai, K. Niimi, S. Wada, R.D. Canoon, B.C. Monk, et al.
Identification of two proteins induced by exposure of the pathogenic fungus Candida glabrata to fluconazole.
Chromatogr Analyt Technol B, 782 (2002), pp. 245-252
[16.]
D. Reboutier, S. Boisnard, A. Conti, V. Chevalier, M. Florent, B. Da Silva, et al.
Combination of different molecular mechanisms leading to fluconazole resistance in a Candida lusitaniae clinical isolate.
Diagn Microbiol Infect Dis, 63 (2009), pp. 188-193
[17.]
T. Fukuoka, D.A. Johnston, C.A. Winslow, M.J. de Groot, C. Burt, S.G. Filler, et al.
Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei.
Antimicrob Agents Chemother, 4 (2003), pp. 1213-1219
[18.]
J.H. Rex, M.A. Pfaller, T.J. Walsh, V. Chaturvedi, A. Espinel-Ingroff, M.A. Ghannoum, et al.
Antifungal susceptibility testing: Practical aspects and current challenges.
Clin Microbiol Rev, 14 (2001), pp. 643-658
[19.]
M.J. Maxwell, S.A. Messer, R.J. Hollis, L. Boyken, S. Tendolkar, D.J. Diekema, et al.
Evaluation of Etest method for determining fluconazole and voriconazole MICs for 279 clinical isolates of Candida species infrequently isolated from blood.
J Clin Microbiol, 41 (2003), pp. 1087-1090
[20.]
A.L. Barry, M.A. Pfaller, R.P. Rennie, P.C. Fuchs, S.D. Brown.
Precision and accuracy of fluconazole susceptibility testing by broth microdilution Etest, and disk diffusion methods.
Antimicrob Agents Chemother, 46 (2002), pp. 1781-1784
[21.]
A. Pitarch, C. Nombela, C. Gil.
Cell wall fractionation for yeast and fungal.
2D-PAGE: Sample preparation and fractionation (Methods in Molecular Biology 425), Second edition, pp. 217-237
[22.]
J. Sambrook, D. Russel.
Commonly used techniques in molecular cloning.
Molecular cloning: A laboratory manual, Third edition,
[23.]
B. Amutha, D. Pain.
Nucleoside diphosphate kinase of Saccharomyces cerevisiae Ynk1p: Localization to the mitochondrial intermembrane space.
Biochem J, 370 (2003), pp. 805-815
[24.]
R.M. Biondi, M. Veron, K. Walz, S. Passeron.
Candida albicans nucleoside-diphosphate kinase: Purification and characterization.
Arch Biochem Biophys, 323 (1995), pp. 187-194
[25.]
I. Lascu, P. Gonin.
The catalytic mechanism of nucleoside diphosphate kinases.
J Bioenerg Biomembr, 32 (2000), pp. 237-246
[26.]
H.M. Andrade, S.M. Murta, A. Chapeaurouge, J. Perales, P. Nirdé, A.J. Romanha.
Proteomic analysis of Trypanosoma cruzi resistance to Benzimidazole.
J Proteome Res, 7 (2008), pp. 2357-2367
[27.]
M. Zagorec, J.M. Buhlers, I. Treichj, T. Kengll, L. Guarentell, R. Labbe-Boiss.
Isolation, sequence, and regulation by oxygen tohfe yeast HEM13 gene coding for coproporphyrinogen oxidase.
J Biol Chem, 263 (1988), pp. 9718-9724
[28.]
J.D. Phillips, F.G. Whitby, C.A. Warby, P. Labbe, C. Yang, J.W. Pflugrath, et al.
Crystal structure of the oxygen-dependant coproporphyrinogen oxidase (Hem13p) of Saccharomyces cerevisiae.
J Biol Chem, 279 (2004), pp. 38960-38968
[29.]
P.K. Mukherjee, S. Mohamed, D. Kuhn, S. Liu, R. Munyon, et al.
Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanolbased mechanism.
Infect Immun, 74 (2006), pp. 3804-3816
[30.]
Y.N. Zhu, S.M. Lu.
Application of differential display-PCR technique in fluconazole-resistance gene expression of Candida.
Zhejiang Da Xue Xue Bao Yi Xue Ban, 34 (2005), pp. 157-162
[31.]
A. Skoneczna, A. Miciałkiewicz, M. Skoneczny.
Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species.
Free Radic Biol Med, 42 (2007), pp. 1409-1420
Copyright © 2011. Asociación Colombiana de Infectología (ACIN)
Descargar PDF
Opciones de artículo