covid
Buscar en
Infectio
Toda la web
Inicio Infectio Células dendríticas y linfocitos T reguladores naturales en pacientes con enfe...
Información de la revista
Vol. 13. Núm. 4.
Páginas 246-253 (diciembre 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 13. Núm. 4.
Páginas 246-253 (diciembre 2009)
Open Access
Células dendríticas y linfocitos T reguladores naturales en pacientes con enfermedad crónica de Chagas
Dendritic cells and natural regulatory T lymphocytes in chronic chagasic patients
Visitas
2612
Paola Lasso1, Adriana Cuéllar2, Fernando Rosas3, Víctor Velasco3, Concepción Puerta1,
Autor para correspondencia
cpuerta@javeriana.edu.co

Carrera 7a N° 43-82, oficina 608, edificio Carlos Ortiz, Bogotá, D.C., Colombia.
1 Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
2 Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
3 Fundación Clínica Abood Shaio, Bogotá, D.C., Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Dada la cronicidad y persistencia del parásito Trypanosoma cruzi en la enfermedad de Chagas, el control homeostático de la respuesta inmunitaria para prevenir el daño tisular y limitar la duración del proceso inflamatorio involucra células con potencial regulador como las células dendríticas y los linfocitos T reguladores. Es por tal motivo que el objetivo de este estudio fue evaluar la proporción de células dendríticas totales, subpoblaciones de células dendríticas mieloides y plasmacitoides y los linfocitos T reguladores naturales en pacientes con enfermedad de Chagas y controles sanos.

Las células mononucleares de sangre periférica de 18 pacientes con enfermedad crónica de Chagas y 16 controles sanos se sometieron a marcación para células dendríticas mieloides Lin- HLA-DR+ CD11c+, CD plasmacitoides Lin- HLA-DR+ CD123+ y linfocitos T reguladores naturales CD3+ CD4+ CD25+ Foxp3+ CD127bajo. Las proporciones celulares se calcularon mediante el porcentaje obtenido por citometría de flujo.

Se encontró que la proporción de células dendríticas plasmacitoides es menor que la de las mieloides, tanto en pacientes con enfermedad crónica de Chagas como en controles sanos, sin diferencias significativas entre ambos grupos. En contraste, se encontró una proporción significativamente mayor de linfocitos T reguladores naturales en los pacientes con enfermedad de Chagas al comparar con los controles sanos. En conclusión, la mayor proporción de linfocitos T reguladores naturales en pacientes con enfermedad crónica de Chagas sugiere que estas células pueden estar contribuyendo en la patogénesis de la enfermedad.

Palabras clave:
enfermedad de Chagas
Trypanosoma cruzi
células dendríticas
linfocitos T reguladores
Abstract

Given the chronicity and persistence of the parasite Trypanosoma cruzi in the Chagas disease victims, the homeostatic control of immune response to prevent tissue damage and limit the duration of the inflammatory process involves cells with regulatory potential as dendritic cells (DC) and regulatory T cells. For this reason, the objective of this study is to evaluate the proportion of total DC, myeloid and plasmacytoid DC subpopulations and natural regulatory T cells in chronic chagasic patients and healthy control subjects. Peripheral blood mononuclear cells (PBMC) from 18 chronic chagasic patients and 16 healthy control subjects were staining to myeloid DC Lin- HLA-DR+ CD11c+, plasmacytoid DC Lin-, HLA-DR+, CD123+ and natural regulatory T lymphocytes CD3+ CD4+ CD25+ Foxp3+ CD127low. Cellular proportions were calculated using the percentage obtained by flow cytometry. It was found that plasmacytoid CD proportion was lower than myeloid CD in both, chronic chagasic patients and healthy control subjects, without significant differences between the two groups. On the contrary, it was found that the proportion of natural regulatory T cells was significantly higher in chronic chagasic patients than in healthy control subjects upon comparing the two. These results suggest that the higher proportion of natural regulatory T cells in chronic chagasic patients might contribute to the disease pathogenesis.

Key words:
Chagas disease
Trypanosoma cruzi
dendritic cells
regulatory T lymphocytes
El Texto completo está disponible en PDF
Bibliografía
[1.]
T.W. Hand, S.M. Kaech.
Intrinsic and extrinsic control of effector T cell survival and memory T cell development.
Immunol Res, 45 (2009), pp. 46-61
[2.]
A. Langenkamp, M. Messi, A. Lanzavecchia, F. Sallusto.
Kinetics of dendritic cell activation impact on priming of Th1, Th2 and non polarized T cells.
Nat Immunol, 1 (2000), pp. 311-316
[3.]
G.A. Schmunis.
Epidemiology of Chagas disease in non-endemic countries: the role of international migration.
Mem Inst Oswaldo Cruz, 102 (2007), pp. 75-85
[4.]
World Health Organization.
Control of Chagas’ disease.
WHO Technical Report Series, 905 (2002), pp. 1-120
[5.]
A. Moncayo.
Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries.
Mem Inst Oswaldo Cruz, 98 (2003), pp. 577-591
[6.]
H.B. Tanowitz, L.V. Kirchhoff, D. Simon, S.A. Morris, L.M. Weiss, M. Wittner.
Chagas disease.
Clin Microbiol Rev, 5 (1992), pp. 400-419
[7.]
R.L. Tarleton, L. Zhang.
Chagas disease etiology: autoimmunity or parasite persistence?.
Parasitol Today, 15 (1999), pp. 94-99
[8.]
R.L. Tarleton.
Parasite persistence in the aetiology of Chagas disease.
Int J Parasitol, 31 (2001), pp. 550-554
[9.]
A. Lanzavecchia, F. Sallusto.
The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics.
Curr Opin Immunol, 13 (2001), pp. 291-298
[10.]
R.M. Steinman, S. Turley, I. Mellman, K. Inaba.
The induction of tolerance by dendritic cells that have captured apoptotic cells.
J Exp Med, 191 (2000), pp. 411-416
[11.]
J.D. Fontenot, M.A. Gavin, A.Y. Rudensky.
Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.
Nat Immunol, 4 (2003), pp. 330-336
[12.]
M.L. Albert, M. Jegathesan, R.B. Darnell.
Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells.
Nat Immunol, 2 (2001), pp. 1010-1017
[13.]
J.F. Fonteneau, M. Larsson, S. Somersan, C. Sanders, C. Münz, W.W. Kwok, et al.
Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells.
J Immunol Methods, 258 (2001), pp. 111-126
[14.]
G. Grouard, M.C. Rissoan, L. Filgueira, I. Durand, J. Banchereau, Y.J. Liu.
The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand.
J Exp Med, 185 (1997), pp. 1101-1111
[15.]
N. Kohrgruber, N. Halanek, M. Gröger, D. Winter, K. Rappersberger, M. Schmitt-Egenolf, et al.
Survival, maturation, and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines.
J Immunol, 163 (1999), pp. 3250-3259
[16.]
S.P. Robinson, S. Patterson, N. English, D. Davies, S.C. Knight, C.D. Reid.
Human peripheral blood contains two distinct lineages of dendritic cells.
[17.]
I.J. Suffia, S.K. Reckling, C.A. Piccirillo, R.S. Goldszmid, Y. Belkaid.
Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens.
J Exp Med, 203 (2006), pp. 777-788
[18.]
S. Sakaguchi.
Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses.
Annu Rev Immunol, 22 (2004), pp. 531-562
[19.]
D.A. Vignali, L.W. Collison, C.J. Workman.
How regulatory T cells work.
Nat Rev Immunol, 8 (2008), pp. 523-532
[20.]
M. Beltrán, S. Duque, F. Guhl, C.P. Herrera, M.C. López, A.L. Moreno, et al.
Prueba de ELISA y prueba de inmunofluorescencia indirecta (IFI).
Manual de procedimientos para el diagnóstico de la enfermedad de Chagas, pp. 32-48
[21.]
K. Sato, S. Fujita.
Dendritic cells: nature and classification.
Allergol Int, 56 (2007), pp. 183-191
[22.]
V. Russo, S. Tanzarella, P. Dalerba, D. Rigatti, P. Rovere, A. Villa, et al.
Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response.
Proc Natl Acad Sci USA, 97 (2000), pp. 2185-2190
[23.]
H. Jonuleit, E. Schmitt, K. Steinbrink, A.H. Enk.
Dendritic cells as a tool to induce anergic and regulatory T cells.
Trends Immunol, 22 (2001), pp. 394-400
[24.]
M. Brenk, M. Scheler, S. Koch, J. Neumann, O. Takikawa, G. Häcker, et al.
Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells.
J Immunol, 183 (2009), pp. 145-154
[25.]
N. Cools, P. Ponsaerts, V.F. van Tendeloo, Z.N. Berneman.
Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells.
J Leukoc Biol, 82 (2007), pp. 1365-1374
[26.]
M.V. Dhodapkar, R.M. Steinman, J. Krasovsky, C. Munz, N. Bhardwaj.
Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells.
J Exp Med, 193 (2001), pp. 233-238
[27.]
M. Gilliet, Y.J. Liu.
Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells.
J Exp Med, 195 (2002), pp. 695-704
[28.]
A. Dolganiuc, S. Chang, K. Kodys, P. Mandrekar, G. Bakis, M. Cormier, et al.
Hepatitis C virus (HCV) core proteininduced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection.
J Immunol, 177 (2006), pp. 6758-6768
[29.]
G. Szabo, A. Dolganiuc.
Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection.
Immunobiology, 210 (2005), pp. 237-247
[30.]
Q. Xie, H.C. Shen, N.N. Jia, H. Wang, L.Y. Lin, B.Y. An, et al.
Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9.
Microbes Infect, 11 (2009), pp. 515-523
[31.]
S. Tavakoli, I. Mederacke, S. Herzog-Hauff, D. Glebe, S. Grün, D. Strand, et al.
Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection.
Clin Exp Immunol, 151 (2008), pp. 61-70
[32.]
L. van Overtvelt, N. Vanderheyde, V. Verhasselt, J. Ismaili, L. De Vos, M. Goldman, et al.
Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines.
HLA-DR, and coestimulatory molecules. Infect Immun, 67 (1999), pp. 4033-4040
[33.]
A. Ouaissi, E. Guilvard, Y. Delneste, G. Caron, G. Magistrelli, N. Herbault, et al.
The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection.
J Immunol, 168 (2002), pp. 6366-6374
[34.]
S.P. Santander, A. Cuéllar, M. Thomas, C. del, F. Guzmán, A. Gómez, M.C. López, et al.
Expression of markers on dendritic cells from chronic chagasic patients stimulated with the KMP-11 protein and the K1 peptide from Trypanosoma cruzi.
Biomédica, 27 (2007), pp. 18-27
[35.]
A. Cuéllar, S.P. Santander, M. Thomas, C. del, F. Guzmán, A. Gómez, M.C. López, et al.
Monocyte-derived dendritic cells from chagasic patients Vs. healthy donors secrete differential levels of IL-10 and IL-12 when stimulated with a protein fragment of Trypanosoma cruzi heatshock protein-70.
Immunol Cell Biol, 86 (2008), pp. 255-260
[36.]
A.M. Faria, S.M. de Moraes, L.H. de Freitas, E. Speziali, T.F. Soares, S.P. Figueiredo-Neves, et al.
Variation rhythms of lymphocyte subsets during healthy aging.
Neuroimmunomodulation, 15 (2008), pp. 365-379
[37.]
I. Itose, T. Kanto, N. Kakita, S. Takebe, M. Inoue, K. Higashitani, et al.
Enhanced ability of regulatory T cells in chronic hepatitis C patients with persistently normal alanine aminotransferase levels than those with active hepatitis.
J Viral Hepat, (2009),
[38.]
G. Peng, S. Li, W. Wu, Z. Sun, Y. Chen, Z. Chen.
Circulating CD4+ CD25+ regulatory T cells correlate with chronic hepatitis B infection.
[39.]
W. Cao, B.D. Jamieson, L.E. Hultin, P.M. Hultin, R. Detels.
Regulatory T cell expansion and immune activation during untreated HIV type 1 infection are associated with disease progression.
AIDS Res Hum Retroviruses, 25 (2009), pp. 183-191
[40.]
P.J. Wingate, K.A. McAulay, I.C. Anthony, D.H. Crawford.
Regulatory T cell activity in primary and persistent Epstein-Barr virus infection.
J Med Virol, 81 (2009), pp. 870-877
[41.]
J. Kotner, R. Tarleton.
Endogenous CD4(+) CD25(+) regulatory T cells have a limited role in the control of Trypanosoma cruzi infection in mice.
Infect Immun, 75 (2007), pp. 861-869
[42.]
D.M. Vitelli-Avelar, R. Sathler-Avelar, A. Teixeira-Carvalho, J.C. Pinto-Dias, E.D. Gontijo, A.M. Faria, et al.
Strategy to assess the overall cytokine profile of circulating leukocytes and its association with distinct clinical forms of human Chagas disease.
Scand J Immunol, 68 (2008), pp. 516-525
[43.]
F.F. Araujo, J.A. Gomes, M.O. Rocha, S. Williams-Blangero, V.M. Pinheiro, M.J. Morato, et al.
Potential role of CD4+CD25HIGH regulatory T cells in morbidity in Chagas disease.
Front Biosci, 12 (2007), pp. 2797-2806
[44.]
R.M. Dunham, B. Cervasi, J.M. Brenchley, H. Albrecht, A. Weintrob, B. Sumpter, et al.
CD127 and CD25 expression defines CD4+ T cell subsets that are differentially depleted during HIV infection.
J Immunol, 180 (2008), pp. 5582-5592
Copyright © 2009. Asociación Colombiana de Infectología (ACIN)
Descargar PDF
Opciones de artículo