covid
Buscar en
Infectio
Toda la web
Inicio Infectio Regulación inmune durante la coinfección por el virus de la inmunodeficiencia ...
Información de la revista
Vol. 13. Núm. 4.
Páginas 268-282 (diciembre 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 13. Núm. 4.
Páginas 268-282 (diciembre 2009)
Open Access
Regulación inmune durante la coinfección por el virus de la inmunodeficiencia humana y el Mycobacterium tuberculosis
Immune regulation during Human Immunodeficiency Virus and Mycobacterium tuberculosis coinfection
Visitas
2707
César Mauricio Rueda1,*, Paula Andrea Velilla1,*, María Teresa Rugeles
,1,
1 Grupo de Inmunovirología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Durante las infecciones crónicas la regulación inmune constituye un mecanismo esencial para controlar los procesos inflamatorios; sin embargo, la excesiva regulación impide el desarrollo de una respuesta efectora adecuada. Las células T reguladoras, las células dendríticas y algunas moléculas inhibitorias, como CTLA-4, PD-1, IL-10, TGF-β y dioxigenasa, participan en la modulación de la respuesta inmune contra el virus de la inmunodeficiencia humana (VIH) y Mycobacterium tuberculosis.

La mayoría de los hallazgos sustentan un efecto negativo de la regulación durante ambas infecciones, debido a que permiten la replicación de los patógenos. La acumulación de células T reguladoras funcionales y la expresión de estas moléculas se han asociado a un mecanismo compensador, en respuesta a la hiperactivación celular y a una inducción directa por parte de los microorganismos.

En la coinfección, el VIH favorece la reactivación de M. tuberculosis y el desarrollo de formas extrapulmonares de la enfermedad.

La infección por M. tuberculosis facilita la entrada del virus a la célula blanco y su replicación. Asimismo, se evidencia un aumento del estado de hiperactivación inmune, junto a una menor respuesta efectora. Aunque la inmunopatogénesis durante la coinfección ha sido poco estudiada, es probable que el estado proinflamatorio y de hiperactivación, característico de ambas infecciones, facilita el desarrollo de mecanismos de regulación que alteren aún más el equilibrio de la respuesta protectora durante la coinfección y facilitan la gravedad de la enfermedad.

Palabras clave:
VIH
Mycobacterium tuberculosis
coinfección
regulación inmune
Abstract

During chronic infections, the immune regulation is an important mechanism to control inflammatory processes; however, the excessive regulation prevents the development of an appropriate effector immune response. The regulatory T cells (Treg), dendritic cells (DC) and some inhibitory molecules such as CTLA-4, PD-1, IL-10, TGF-β e IDO take part in the modulation of the immune response against the human immunodeficiency virus (HIV) and the Mycobacterium tuberculosis (M.tb).

Most of the evidence supports a negative effect of the immune regulation during both infections, due to the fact that they allow the active replication of the pathogens. The accumulation of functional Treg cells and the expression of these molecules have been associated with a compensating mechanism, in response to a cellular hyper-activation and to these microorganisms direct induction.

During the co-infection, the HIV favors the reactivation of M.tb and the development of extra-pulmonary TB forms. The M.tb infection promotes the entry of the virus into target cells and its replication. Likewise, an increase of the immune hyper-activation state has been reported along with low effector responses. Although the immune-pathogenesis during the co-infection has not been extensively studied, most likely the pro-inflammatory and immunological hyper-activation state, typical of both infections, promotes the development of immune regulatory mechanisms that further disturb the balance between the protective and pathogenic responses during co-infection, favoring the illness severity.

Key words:
HIV
Mycobacterium tuberculosis
co-infection
immune regulation
El Texto completo está disponible en PDF
Referencias
[1.]
ONUSIDA.
Informe sobre la epidemia mundial de sida.
Catalogación por la Biblioteca de la OMS, 08 (2008), pp. 25S
[2.]
WHO.
Global tuberculosis control: surveillance, planning, financing.
WHO Library Cataloguing-in-Publication Data, 393 (2008), pp. 1-291
[3.]
WHO.
Global TB database, (2006),
[4.]
WHO.
TB/HIV a clinical manual.
WHO Library Cataloguing-in- Publication Data, 329 (2005), pp. 1-205
[5.]
M. Colonna, G. Trinchieri, Y.J. Liu.
Plasmacytoid dendritic cells in immunity.
Nat Immunol, 5 (2004), pp. 1219-1226
[6.]
N. Grandvaux, B.R. tenOever, M.J. Servant, J. Hiscott.
The interferon antiviral response: from viral invasion to evasion.
Curr Opin Infect Dis, 15 (2002), pp. 259-267
[7.]
E.S. Rosenberg, J.M. Billingsley, A.M. Caliendo, S.L. Boswell, P.E. Sax, S.A. Kalams, et al.
Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia.
Science, 278 (1997), pp. 1447-1450
[8.]
C.J. Montoya, M.E. Moreno, M.T. Rugeles.
Reacciones y alteraciones del sistema inmune durante la infección por el VIH-1.
Infectio, 10 (2006), pp. 250-265
[9.]
Z. Grossman, M. Meier-Schellersheim, W.E. Paul, L.J. Picker.
Pathogenesis of HIV infection: what the virus spares is as important as what it destroys.
Nat Med, 12 (2006), pp. 289-295
[10.]
S.H. Kaufmann.
Protection against tuberculosis: cytokines, T cells, and macrophages.
Ann Rheum Dis, 61 (2002), pp. ii54-ii58
[11.]
J.L. Flynn.
Immunology of tuberculosis and implications in vaccine development.
Tuberculosis (Edinb), 84 (2004), pp. 93-101
[12.]
D.O. Co, L.H. Hogan, S.I. Kim, M. Sandor.
Mycobacterial granulomas: keys to a long-lasting host-pathogen relationship.
Clin Immunol, 113 (2004), pp. 130-136
[13.]
S.H.E. Kaufmann.
New issues in tuberculosis.
Ann Rheum Dis, 63 (2004), pp. ii50-ii56
[14.]
S.H.E. Kaufmann.
Protection against tuberculosis: cytokines, T cells, and macrophages.
Ann Rheum Dis, 61 (2002),
[15.]
A. Foussat, L. Bouchet-Delbos, D. Berrebi, I. Durand-Gasselin, A. Coulomb-L’Hermine, R. Krzysiek, et al.
Deregulation of the expression of the fractalkine/fractalkine receptor complex in HIV-1-infected patients.
Blood, 98 (2001), pp. 1678-1686
[16.]
H.C. Lane, H. Masur, L.C. Edgar, G. Whalen, A.H. Rook, A.S. Fauci.
Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome.
N Engl J Med, 309 (1983), pp. 453-458
[17.]
T. Hertoghe, A. Wajja, L. Ntambi, A. Okwera, M.A. Aziz, C. Hirsch, et al.
T cell activation, apoptosis and cytokine dysregulation in the (co)pathogenesis of HIV and pulmonary tuberculosis (TB).
Clin Exp Immunol, 122 (2000), pp. 350-357
[18.]
A. Lim, D. Tan, P. Price, A. Kamarulzaman, H.Y. Tan, I. James, et al.
Proportions of circulating T cells with a regulatory cell phenotype increase with HIV-associated immune activation and remain high on antiretroviral therapy.
[19.]
A. Wiercinska-Drapalo, R. Flisiak, J. Jaroszewicz, D. Prokopowicz.
Increased plasma transforming growth factor-beta1 is associated with disease progression in HIV-1-infected patients.
Viral Immunol, 17 (2004), pp. 109-113
[20.]
A. Boasso, J.P. Herbeuval, A.W. Hardy, S.A. Anderson, M.J. Dolan, D. Fuchs, et al.
HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells.
Blood, 109 (2007), pp. 3351-3359
[21.]
W. Cao, B.D. Jamieson, L.E. Hultin, P.M. Hultin, R. Detels.
Regulatory T cell expansion and immune activation during untreated HIV type 1 infection are associated with disease progression.
AIDS Res Hum Retroviruses, 25 (2009), pp. 183-191
[22.]
F.O. Sánchez, J.I. Rodríguez, G. Agudelo, L.F. García.
Immune responsiveness and lymphokine production in patients with tuberculosis and healthy controls.
Infect Immun, 62 (1994), pp. 5673-5678
[23.]
D.S. Rodrigues, E.A. Medeiros, L.Y. Weckx, W. Bonnez, R. Salomao, E.G. Kallas.
Immunophenotypic characterization of peripheral T lymphocytes in Mycobacterium tuberculosis infection and disease.
Clin Exp Immunol, 128 (2002), pp. 149-154
[24.]
V.A. Boussiotis, E.Y. Tsai, E.J. Yunis, S. Thim, J.C. Delgado, C.C. Dascher, et al.
IL-10-producing T cells suppress immune responses in anergic tuberculosis patients.
J Clin Invest, 105 (2000), pp. 1317-1325
[25.]
T. Roberts, N. Beyers, A. Aguirre, G. Walzl.
Immunosuppression during active tuberculosis is characterized by decreased interferon-gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor-beta, and interleukin-4 mRNA levels.
J Infect Dis, 195 (2007), pp. 870-878
[26.]
A. Boasso, G.M. Shearer.
Chronic innate immune activation as a cause of HIV-1 immunopathogenesis.
Clin Immunol, 126 (2008), pp. 235-242
[27.]
A.S. Varadhachary, P. Salgame.
CD95 mediated T cell apoptosis and its relevance to immune deviation.
Oncogene, 17 (1998), pp. 3271-3276
[28.]
M.D. Hazenberg, S.A. Otto, B.H. van Benthem, M.T. Roos, R.A. Coutinho, J.M. Lange, et al.
Persistent immune activation in HIV-1 infection is associated with progression to AIDS.
[29.]
S. Bhattacharyya, R. Singla, A.B. Dey, H.K. Prasad.
Dichotomy of cytokine profiles in patients and high-risk healthy subjects exposed to tuberculosis.
Infect Immun, 67 (1999), pp. 5597-5603
[30.]
C.S. Hirsch, Z. Toossi, G. Vanham, J.L. Johnson, P. Peters, A. Okwera, et al.
Apoptosis and T cell hyporesponsiveness in pulmonary tuberculosis.
J Infect Dis, 179 (1999), pp. 945-953
[31.]
M. Miyara, S. Sakaguchi.
Natural regulatory T cells: mechanisms of suppression.
Trends Mol Med, 13 (2007), pp. 108-116
[32.]
Y. Belkaid.
Regulatory T cells and infection: a dangerous necessity.
Nat Rev Immunol, 7 (2007), pp. 875-888
[33.]
K. Mahnke, T.S. Johnson, S. Ring, A.H. Enk.
Tolerogenic dendritic cells and regulatory T cells: a two-way relationship.
J Dermatol Sci, 46 (2007), pp. 159-167
[34.]
C.M. Sun, J.A. Hall, R.B. Blank, N. Bouladoux, M. Oukka, J.R. Mora, et al.
Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid.
J Exp Med, 204 (2007), pp. 1775-1785
[35.]
M.D. Sharma, B. Baban, P. Chandler, D.Y. Hou, N. Singh, H. Yagita, et al.
Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase.
J Clin Invest, 117 (2007), pp. 2570-2582
[36.]
D.H. Munn, A.L. Mellor.
Indoleamine 2,3-dioxygenase and tumor-induced tolerance.
J Clin Invest, 117 (2007), pp. 1147-1154
[37.]
A. Taylor, J. Verhagen, K. Blaser, M. Akdis, C.A. Akdis.
Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells.
Immunology, 117 (2006), pp. 433-442
[38.]
C.A. Piccirillo, E.M. Shevach.
Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells.
J Immunol, 167 (2001), pp. 1137-1140
[39.]
C.Y. Lin, L. Graca, S.P. Cobbold, H. Waldmann.
Dominant transplantation tolerance impairs CD8+ T cell function but not expansion.
Nat Immunol, 3 (2002), pp. 1208-1213
[40.]
F. Ghiringhelli, C. Menard, M. Terme, C. Flament, J. Taieb, N. Chaput, et al.
CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner.
J Exp Med, 202 (2005), pp. 1075-1085
[41.]
K. Nakamura, A. Kitani, W. Strober.
Cell contact-dependent immunosuppression by CD4(+) CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta.
J Exp Med, 194 (2001), pp. 629-644
[42.]
I. Kryczek, S. Wei, L. Zou, G. Zhu, P. Mottram, H. Xu, et al.
Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells.
J Immunol, 177 (2006), pp. 40-44
[43.]
G.L. Sica, I.H. Choi, G. Zhu, K. Tamada, S.D. Wang, H. Tamura, et al.
B7-H4, a molecule of the B7 family, negatively regulates T cell immunity.
Immunity, 18 (2003), pp. 849-861
[44.]
H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, et al.
Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.
Nat Med, 8 (2002), pp. 793-800
[45.]
L. Chen.
Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity.
Nat Rev Immunol, 4 (2004), pp. 336-347
[46.]
F. Fallarino, U. Grohmann, K.W. Hwang, C. Orabona, C. Vacca, R. Bianchi, et al.
Modulation of tryptophan catabolism by regulatory T cells.
Nat Immunol, 4 (2003), pp. 1206-1212
[47.]
H. Kared, J.D. Lelievre, V. Donkova-Petrini, A. Aouba, G. Melica, M. Balbo, et al.
HIV-specific regulatory T cells are associated with higher CD4 cell counts in primary infection.
[48.]
C.M. Rueda, P.A. Velilla, M.T. Rugeles.
Células T reguladoras naturales durante la infección por el VIH: el tejido linfoide como blanco primario de la replicación viral.
Iatreia, 22 (2009), pp. 159-168
[49.]
A. Kinter, J. McNally, L. Riggin, R. Jackson, G. Roby, A.S. Fauci.
Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals.
Proc Natl Acad Sci U S A, 104 (2007), pp. 3390-3395
[50.]
H.J. Epple, C. Loddenkemper, D. Kunkel, H. Troger, J. Maul, V. Moos, et al.
Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART.
Blood, 108 (2006), pp. 3072-3078
[51.]
J. Nilsson, A. Boasso, P.A. Velilla, R. Zhang, M. Vaccari, G. Franchini, et al.
HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS.
Blood, 108 (2006), pp. 3808-3817
[52.]
J. Andersson, A. Boasso, J. Nilsson, R. Zhang, N.J. Shire, S. Lindback, et al.
The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients.
J Immunol, 174 (2005), pp. 3143-3147
[53.]
A.L. Kinter, M. Hennessey, A. Bell, S. Kern, Y. Lin, M. Daucher, et al.
CD25(+) CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status.
J Exp Med, 200 (2004), pp. 331-343
[54.]
L. Fantuzzi, C. Purificato, K. Donato, F. Belardelli, S. Gessani.
Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis.
[55.]
M.D. Krathwohl, T.W. Schacker, J.L. Anderson.
Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIVinfected subjects.
J Infect Dis, 193 (2006), pp. 494-504
[56.]
C.L. Day, D.E. Kaufmann, P. Kiepiela, J.A. Brown, E.S. Moodley, S. Reddy, et al.
PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression.
Nature, 443 (2006), pp. 350-354
[57.]
M. D'Souza, A.P. Fontenot, D.G. Mack, C. Lozupone, S. Dillon, A. Meditz, et al.
Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction.
J Immunol, 179 (2007), pp. 1979-1987
[58.]
D.E. Kaufmann, D.G. Kavanagh, F. Pereyra, J.J. Zaunders, E.W. Mackey, T. Miura, et al.
Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction.
Nat Immunol, 8 (2007), pp. 1246-1254
[59.]
A. Hryniewicz, A. Boasso, Y. Edghill-Smith, M. Vaccari, D. Fuchs, D. Venzon, et al.
CTLA-4 blockade decreases TGF-beta, dioxigenasa, and viral RNA expression in tissues of SIVmac251-infected macaques.
Blood, 108 (2006), pp. 3834-3842
[60.]
V. Velu, K. Titanji, B. Zhu, S. Husain, A. Pladevega, L. Lai, et al.
Enhancing SIV-specific immunity in vivo by PD-1 blockade.
Nature, 458 (2009), pp. 206-210
[61.]
X. Chen, B. Zhou, M. Li, Q. Deng, X. Wu, X. Le, et al.
CD4(+) CD25(+) FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease.
Clin Immunol, 123 (2007), pp. 50-59
[62.]
L. Li, S.H. Lao, C.Y. Wu.
Increased frequency of CD4(+) CD25 (high) Treg cells inhibit BCG-specific induction of IFN-gamma by CD4(+) T cells from TB patients.
Tuberculosis (Edinb), 87 (2007), pp. 526-534
[63.]
R. Ribeiro-Rodrigues, T. Resende, R. Rojas, Z. Toossi, R. Dietze, W.H. Boom, et al.
A role for CD4+ CD25+ T cells in regulation of the immune response during human tuberculosis.
Clin Exp Immunol, 144 (2006), pp. 25-34
[64.]
V. Guyot-Revol, J.A. Innes, S. Hackforth, T. Hinks, A. Lalvani.
Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis.
Am J Respir Crit Care Med, 173 (2006), pp. 803-810
[65.]
J.M. Hougardy, S. Place, M. Hildebrand, A. Drowart, A.S. Debrie, C. Locht, et al.
Regulatory T cells depress immune responses to protective antigens in active tuberculosis.
Am J Respir Crit Care Med, 176 (2007), pp. 409-416
[66.]
S. Burl, P.C. Hill, D.J. Jeffries, M.J. Holland, A. Fox, M.D. Lugos, et al.
FOXP3 gene expression in a tuberculosis case contact study.
Clin Exp Immunol, 149 (2007), pp. 117-122
[67.]
M. Chieppa, G. Bianchi, A. Doni, A. Del Prete, M. Sironi, G. Laskarin, et al.
Cross-linking of the mannose receptor on monocytederived dendritic cells activates an anti-inflammatory immunosuppressive program.
J Immunol, 171 (2003), pp. 4552-4560
[68.]
V.K. Latchumanan, M.Y. Balkhi, A. Sinha, B. Singh, P. Sharma, K. Natarajan.
Regulation of immune responses to Mycobacterium tuberculosis secretory antigens by dendritic cells.
Tuberculosis (Edinb), 85 (2005), pp. 377-383
[69.]
J.O. Jurado, I.B. Álvarez, V. Pasquinelli, G.J. Martínez, M.F. Quiroga, E. Abbate, et al.
Programmed death (PD)-1:PD-ligand 1/PDligand 2 pathway inhibits T cell effector functions during human tuberculosis.
J Immunol, 181 (2008), pp. 116-125
[70.]
J. Kirman, K. McCoy, S. Hook, M. Prout, B. Delahunt, I. Orme, et al.
CTLA-4 blockade enhances the immune response induced by mycobacterial infection but does not lead to increased protection.
Infect Immun, 67 (1999), pp. 3786-3792
[71.]
A. Merlo, D. Saverino, C. Tenca, C.E. Grossi, S. Bruno, E. Ciccone.
CD85/LIR-1/ILT2 and CD152 (cytotoxic T lymphocyte antigen 4) inhibitory molecules down-regulate the cytolytic activity of human CD4+ T-cell clones specific for Mycobacterium tuberculosis.
Infect Immun, 69 (2001), pp. 6022-6029
[72.]
J.P. Scott-Browne, S. Shafiani, G. Tucker-Heard, K. Ishida-Tsubota, J.D. Fontenot, A.Y. Rudensky, et al.
Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis.
J Exp Med, 204 (2007), pp. 2159-2169
[73.]
C.M. Mason, E. Porretta, P. Zhang, S. Nelson.
CD4+ CD25+ transforming growth factor-beta-producing T cells are present in the lung in murine tuberculosis and may regulate the host inflammatory response.
Clin Exp Immunol, 178 (2007), pp. 2661-2665
[74.]
M. Kursar, M. Koch, H.W. Mittrucker, G. Nouailles, K. Bonhagen, T. Kamradt, et al.
Cutting Edge: Regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis.
J Immunol, 178 (2007), pp. 2661-2665
[75.]
S.K. Sharma, A. Mohan, T. Kadhiravan.
HIV-TB co-infection: epidemiology, diagnosis & management.
Indian J Med Res, 121 (2005), pp. 550-567
[76.]
M.I. Murcia-Aranguren, J.E. Gómez-Marín, F.S. Alvarado, J.G. Bustillo, E. de Mendivelson, B. Gómez, et al.
Frequency of tuberculous and non-tuberculous mycobacteria in HIV infected patients from Bogotá.
Colombia. BMC Infect Dis, 1 (2001), pp. 21
[77.]
J.L. Flynn, M.M. Goldstein, K.J. Triebold, B. Koller, B.R. Bloom.
Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection.
Proc Natl Acad Sci U S A, 89 (1992), pp. 12013-12017
[78.]
B.M. Saunders, A.A. Frank, I.M. Orme, A.M. Cooper.
CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis.
Cell Immunol, 216 (2002), pp. 65-72
[79.]
OMS. Nota descriptiva. Tuberculosis e infección por el VIH OMS 2008. [en línea] 2008. [Fecha de acceso noviembre 30 de 2009]. URL disponible en : http://www.stoptb.org/wg/tb_hiv/assets/documents/VIH%20Translation_ES0397_fin08%20fact%20sheet%20TB%20HIV%20-%20SPANISH.pdf.
[80.]
N. Markowitz, N.I. Hansen, P.C. Hopewell, J. Glassroth, P.A. Kvale, B.T. Mangura, The Pulmonary Complications of HIV Infection Study Group, et al.
Incidence of tuberculosis in the United States among HIV-infected persons.
Ann Intern Med, 126 (1997), pp. 123-132
[81.]
S.K. Sharma, A. Mohan.
Extrapulmonary tuberculosis.
Indian J Med Res, 120 (2004), pp. 316-353
[82.]
D. Goletti, D. Weissman, R.W. Jackson, N.M. Graham, D. Vlahov, R.S. Klein, et al.
Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation.
J Immunol, 157 (1996), pp. 1271-1278
[83.]
Z. Toossi, H. Mayanja-Kizza, C.S. Hirsch, K.L. Edmonds, T. Spahlinger, D.L. Hom, et al.
Impact of tuberculosis (TB) on HIV-1 activity in dually infected patients.
Clin Exp Immunol, 123 (2001), pp. 233-238
[84.]
G. Poli, A. Kinter, J.S. Justement, J.H. Kehrl, P. Bressler, S. Stanley, et al.
Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression.
Proc Natl Acad Sci U S A, 87 (1990), pp. 782-785
[85.]
V. Garrait, J. Cadranel, H. Esvant, I. Herry, P. Morinet, C. Mayaud, et al.
Tuberculosis generates a microenvironment enhancing the productive infection of local lymphocytes by HIV.
J Immunol, 159 (1997), pp. 2824-2830
[86.]
Y. Zhang, K. Nakata, M. Weiden, W.N. Rom.
Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat.
J Clin Invest, 95 (1995), pp. 2324-2331
[87.]
R. Bernier, B. Barbeau, M. Olivier, M.J. Tremblay.
Mycobacterium tuberculosis mannose-capped lipoarabinomannan can induce NF-kappaB-dependent activation of human immunodeficiency virus type 1 long terminal repeat in T cells.
J Gen Virol, 79 (1998), pp. 1353-1361
[88.]
N.P. Juffermans, P. Speelman, A. Verbon, J. Veenstra, C. Jie, S.J. van Deventer, et al.
Patients with active tuberculosis have increased expression of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells.
Clin Infect Dis, 32 (2001), pp. 650-652
[89.]
N.P. Juffermans, W.A. Paxton, P.E. Dekkers, A. Verbon, E. de Jonge, P. Speelman, et al.
Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines.
Blood, 96 (2000), pp. 2649-2654
[90.]
Z. Ramírez, J.C. Catano, A. Román, M.T. Rugeles, C.J. Montoya.
Efecto de las infecciones oportunistas sobre las subpoblaciones de leucocitos en individuos infectados con el virus de inmunodeficiencia humana tipo 1.
Biomédica, 28 (2008), pp. 64-77
[91.]
M.A. French.
Disorders of immune reconstitution in patients with HIV infection responding to antiretroviral therapy.
Curr HIV/AIDS Rep, 4 (2007), pp. 16-21
[92.]
Y.C. Manabe, J.D. Campbell, E. Sydnor, R.D. Moore.
Immune reconstitution inflammatory syndrome: risk factors and treatment implications.
J Acquir Immune Defic Syndr, 46 (2007), pp. 456-462
[93.]
C. Michailidis, A.L. Pozniak, S. Mandalia, S. Basnayake, M.R. Nelson, B.G. Gazzard.
Clinical characteristics of IRIS syndrome in patients with HIV and tuberculosis.
Antivir Ther, 10 (2005), pp. 417-422
[94.]
J. Vecchiet, M. Dalessandro, F. Travasi, K. Falasca, A. Di Iorio, C. Schiavone, et al.
Interleukin-4 and interferon-gamma production during HIV-1 infection and changes induced by antiretroviral therapy.
Int J Immunopathol Pharmacol, 16 (2003), pp. 157-166
[95.]
P. Brazille, N. Dereuddre-Bosquet, C. Leport, P. Clayette, O. Boyer, J.L. Vilde, et al.
Decreases in plasma TNF-alpha level and IFN-gamma mRNA level in peripheral blood mononuclear cells (PBMC) and an increase in IL-2 mRNA level in PBMC are associated with effective highly active antiretroviral therapy in HIV-infected patients.
Clin Exp Immunol, 131 (2003), pp. 304-311
[96.]
N.W. Schluger, D. Perez, Y.M. Liu.
Reconstitution of immune responses to tuberculosis in patients with HIV infection who receive antiretroviral therapy.
Chest, 122 (2002), pp. 597-602
[97.]
G. Vanham, K. Edmonds, L. Qing, D. Hom, Z. Toossi, B. Jones, et al.
Generalized immune activation in pulmonary tuberculosis: co-activation with HIV infection.
Clin Exp Immunol, 103 (1996), pp. 30-34
[98.]
T. Schon, D. Wolday, D. Elias, E. Melese, F. Moges, T. Tessema, et al.
Kinetics of sedimentation rate, viral load and TNF-alpha in relation to HIV co-infection in tuberculosis.
Trans R Soc Trop Med Hyg, 100 (2006), pp. 483-488
[99.]
M. Bocchino, A. Sanduzzi, F. Bariffi.
Mycobacterium tuberculosis and HIV co-infection in the lung: synergic immune dysregulation leading to disease progression.
Monaldi Arch Chest Dis, 55 (2000), pp. 381-388
[100.]
H. Silveira, D. Ordway, H. Dockrell, M. Jackson, F. Ventura.
Cellmediated immune responses to mycobacterial antigens in patients with pulmonary tuberculosis and HIV infection.
Clin Exp Immunol, 110 (1997), pp. 26-34
[101.]
M. Zhang, J. Gong, D.V. Iyer, B.E. Jones, R.L. Modlin, P.F. Barnes.
T cell cytokine responses in persons with tuberculosis and human immunodeficiency virus infection.
J Clin Invest, 94 (1994), pp. 2435-2442
[102.]
J.H. Gong, M. Zhang, R.L. Modlin, P.S. Linsley, D. Iyer, Y. Lin, et al.
Interleukin-10 downregulates Mycobacterium tuberculosis-induced Th1 responses and CTLA-4 expression.
Infect Immun, 64 (1996), pp. 913-918

Rueda C, Velilla P, Rugeles M. Regulación inmune de la infecciónde Mycobacterium tuberculosis durante la infección por el virus de inmunodeficiencia humana. Infectio. 2009 13 (4)

Copyright © 2009. Asociación Colombiana de Infectología (ACIN)
Descargar PDF
Opciones de artículo