As composites have continued to be optimized, significant differences in physical, mechanical, and clinica performances between the available systems have lessened. Yet, despite all the improvements, one constant remains: direct composites need to be light-polymerized. Clinicians need to understand the principles of light-curing because unbound monomers are cytotoxic and improperly cured composites are less biocompatible. Presently, there are four technologies available to cure composites. Once the light source is chosen, the clinician should consider several factors to ensure that the composite is being cured satisfactorily. This article analyzes the various current technologies, their strengths and weaknesses, and the relevance of following certain protocols to ensure proper polymerization rates.
Información de la revista
Vol. 6. Núm. 3.
Páginas 148-153 (diciembre 2013)
Vol. 6. Núm. 3.
Páginas 148-153 (diciembre 2013)
Review Article
Open Access
Clinical criteria for the successful curing of composite materials
Visitas
3552
E. Mahn1,
Autor para correspondencia
emahn@miuandes.cl
Correspondence author: Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile.
Correspondence author: Monseñor Álvaro del Portillo 12.455, Las Condes, Santiago, Chile.
1 Universidad de los Andes. Chile
Este artículo ha recibido
Información del artículo
Abstract
Key words:
History
curing depth
light intensity
different methods
El Texto completo está disponible en PDF
References
[1.]
M. Buonocore.
Adhesive sealing of pits and fissures for caries prevention, with use of ultraviolet light.
J Am Dent Assoc, 80 (1970), pp. 324-330
[2.]
F.A. Rueggeberg, State-of-the-art:.
Dental photocuring-a review.
Dent Mater., 27 (2011), pp. 39-52
[3.]
J.W. Stansbury.
Curing dental resins and composites by photopolymerization.
J Esthet Dent, 12 (2000), pp. 300-308
[4.]
N. Hofmann, B. Hugo, K. Schubert, B. Klaiber.
Comparison between a plasma arc light source and conventional halogen curing units regarding flexural strength, modulus, and hardness of photoactivated resin composites.
Clin Oral Investig., 4 (2000), pp. 140-147
[5.]
S.H. Park, I. Krejci, E. Lutz.
Microhardness of resin composites polymerized by plasma arc or conventional visible light curing.
Oper Dent., 27 (2002), pp. 30-37
[6.]
S. Sharkey, N. Ray, F. Burke, H. Ziada, A. Hannigan.
Surface hardness of lightactivated resin composites cured by two different visible-light sources: An in vitro study.
Quintessence Int., 32 (2001), pp. 401-457
[7.]
K. Fujibayashi, K. Ishimaru, A. Kohno.
A study on light activation units using blue light-emitting diodes.
J Jpn Dent Pres Acad, 39 (1996), pp. 180-188
[8.]
O. Polydorou, A. Manolaxis, E. Hellwig, P. Hahn.
Evaluation of the curing depth of two translucent composite materials using a halogen and two LED curing units.
Clin Oral Invest, 12 (2008), pp. 45-51
[9.]
K.D. Jandt, R.W. Mills, G.B. Blackwell, S.H. Asworth.
Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs).
Dent Mater, 16 (1999), pp. 41-47
[10.]
F. Stahl, S.H. Ashworth, K.D. Jandt, R.W. Mills.
Light emitting diode (LED) polymerization of dental composites: Flexural properties and polymerization potential.
Biomaterials, 21 (2000), pp. 1379-1985
[11.]
G. Meyer, C.P. Ernst, B. Willershausen.
Decrease in power output of new lightemitting diode (LED) curing devices with increasing distance to filling surface.
J Adhes Dent, 4 (2002), pp. 197-204
[12.]
T.H. Yoon, Y.K. Lee, B.S. Lim, C.W. Kim.
Degree of polymerization of resin composites by different light sources.
J Oral Rehabil., 29 (2002), pp. 1165-1173
[13.]
R.W. Mills, K.D. Jandt, S.H. Ashworth.
Dental composite depth of cure with halogen and blue light emitting diode (LED) technology.
Br Dent J, 186 (1999), pp. 388-391
[14.]
R.B. Price, D. Labrie, F.A. Rueggeberg, C.M. Felix.
Irradiance differences in the violet (405nm) and blue (460nm) spectral ranges among dental light-curing units.
J Esthet Restor Dent., 22 (2010), pp. 363-377
[15.]
M. Kawaguchi, T. Fukushima, K. Miyazaki.
The relationship between cure depth and transmission coefficient of visible-light-activated resin composites.
J Dent Res, 73 (1994), pp. 516-521
[16.]
C.L. Davidson, A.J. de Gee.
Light-curing units, polymerization, and clinical implications.
J Adhesive Dent, 2 (2000), pp. 167-173
[17.]
G. Leloup, P.E. Holvoet, S. Bebeiman, J. Devaux.
Raman scattering determination of the depth of cure of light-activated composites: Influence of different clinically relevant parameters.
J Oral Rehabil, 29 (2002), pp. 510-515
[19.]
W.D. Cook, P.M. Standish.
Cure of resin based restorative materials. II. White light photopolymerized resins.
Aust Dent J, 28 (1983), pp. 307-311
[20.]
P. Koran, R. Kürschner.
Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization.
Am J Dent., 11 (1998), pp. 17-22
[21.]
P.L. Fan, R.M. Schumacher, K. Azzolin, R. Geary, F.C. Eichmiller.
Curing-light intensity and depth of cure of resin-based composites tested according to international standards.
J Am Dent Assoc, 133 (2002), pp. 429-434
[22.]
F.A. Rueggeberg, D.M. Jordan.
Effect of light tip distance on polymerization of resin composite.
Int J Prosthodont, 6 (1993), pp. 364-370
[23.]
F.A. Rueggeberg, W.F. Cauhman, J.W. Curtis.
Effect of light intensity and exposure duration on cure resin composite.
Oper Dent, 19 (1994), pp. 26-32
[24.]
B.A. Scott, C.A. Felix, R.B. Price.
Effect of disposable infection control barriers on light output from dental curing lights.
J Can Dent Assoc, 70 (2004), pp. 105-110
[25.]
C.P. Ernst, I. Busemann, T. Kern, B. Willershausen.
Feldtest zur Lichtemissionsleistung von. Polymerisationsgeräten in zahnärztlichen.
Praxen, DZZ, 9 (2006), pp. 466-471
[26.]
R. McAndrew, C.D. Lynch, M. Pavli, A. Bannon, P. Milward.
The effect of disposable infection control barriers and physical damage on the power output of light curing units and light curing tips.
Br Dent J., 23 (2011), pp. E12
[27.]
B.A. Mitton, N.H. Wilson.
The use and maintenance of visible light activating units in general practice.
Br Dent J., 191 (2001), pp. 82-86
[28.]
Y.J. Park, K.H. Chae, H.R. Rawls.
Development of new photoinitiation system for dental light-cure composite resin.
Dent Mater, 15 (1999), pp. 120-127
[29.]
C. Severin, M. Maquin, R. Husson.
Argon ion laser beam as restorative resin photocuring agent: Clinical requirement, power output specification (Abstract 73).
J Dent Res, 65 (1986), pp. 123
[30.]
M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, I. Correa.
Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units.
J Dent, 33 (2005), pp. 525-532
[31.]
BASF. Technical information of coating raw materials, June 2001. BASF Corporation Dispersions & Paper Chemicals Charlotte Technical Center 11501 Steele Creek Road Charlotte, NC 28273.
[32.]
M.C. Giorgi, F.H. Aguiar, L.E. Soares, A.A. Martin, P.C. Liporoni, L.A. Paulillo.
Does an additional UV LED improve the degree of conversion and Knoop Hardness of lightshade composite resins?.
Eur J Dent., 6 (2012), pp. 396-401
[33.]
A. Santini, V. Miletic, M.D. Swift, M. Bradley.
Degree of conversion and microhardness of TPO-containing resin-based composites cured by polywave and monowave LED units.
J Dent., 40 (2012), pp. 577-584
[34.]
F. Lutz, I. Kejci, B. Luescher, T.R. Oldenburg.
Improved proximal marginal adaptation of class II composite restorations by use of light reflecting wedges.
Quintessence Int, 17 (1986), pp. 659-664
[35.]
M.F. De Goes, E. Rubbi, O. Baffa, H. Panzeri.
Optical transmittance of reflecting wedges.
Am J of Dent, 5 (1992), pp. 78-80
[36.]
G.M. Lösche.
Marginal adaptation of class II composite fillings: Guided polymerization vs reduced light intensity.
J Adhes Dent., 1 (1999), pp. 31-39
[37.]
K. Vogel, U. Salz.
Influence of trans-tooth curing on physical properties of composite (Abstract 137).
J Dent Res, 76 (1997), pp. 1111
[38.]
A. Versluis, D. Tanbirojn, W.H. Douglas.
Do dental composite always shrink toward the light?.
J Dent Res., 77 (1998), pp. 1435-1445
[39.]
E.K. Hansen, E. Asmussen.
Visible light-curing units: Correlation between depth of cure and distance between exit window and resin surface.
Acta Odontol Scand, 55 (1997), pp. 162-166
[40.]
J.A. Pires, E. Cvitko, G.E. Denehy, E.J. Swift Jr..
Effects of curing tip distance on light intensity and composite resin microhardness.
Quintessence Int, 24 (1993), pp. 517-521
[41.]
C. Prati, S. Chersoni, L. Montebugnoli, G. Montanari.
Effect of air, dentin and resinbased composite thickness on light intensity reduction.
Am J Dent, 12 (1999), pp. 231-234
[42.]
R.B. Price, T. Derand, M. Sedarous, P. Andreou, R.W. Loney.
Effect of the distance on the power density from two light guides.
J Esthet Dent, 12 (2000), pp. 320-327
[43.]
R.B. Price, D. Labrie, J.M. Whalen, C.M. Felix.
Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units.
J Can Dent Assoc., 77 (2011), pp. b9
[44.]
L.G. Cunha, R.C.B. Alonso, M.A.C. Sinhoreti, M.F. Goes, L. Correr-Sobrinho.
Effect of curing methods and base materials on the stress generated by the polymerization shrinkage of a resin composite.
Braz J Oral Sci, 3 (2004), pp. 609-614
[45.]
A.J. Feilzer, L.H. Dooren, A.J. de Gee, C.L. Davidson.
Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity-interface.
Eur J Oral Sci, 103 (1995), pp. 322-326
[46.]
T. Yoshikawa, M.F. Burrow, J. Tagami.
A light curing method for improving marginal sealing and cavity wall adaptation on resin composite restorations.
Dent Mater, 17 (2001), pp. 359-366
[47.]
A. Mehl, R. Hickel, K.H. Kunzelmann.
Physical properties and gap formation of light cured composites with and without “soft start polymerization”.
J Dent, 25 (1997), pp. 321-330
[48.]
J. Kanca, B.I. Suh.
Pulse activation: Reducing resin-based composite contraction stresses at the enamel cavosurface margins.
Am J Dent, 12 (1999), pp. 107-112
[49.]
B.I. Suh, L. Feng, Y. Wang, C. Cripe, F. Cincione, W. Rjik.
The effect of pulse-delay cure technique on residual strain in composites.
Compend Contin Educ Dent, 20 (1999), pp. 4-12
[50.]
A.C. Obici, M.A.C. Sinhoreti, M.F. de Goes, S. Consani, L.C. Sobrinho.
Effect of the photo-activation method on polymerization shrinkage of restorative composites.
Oper Dent, 27 (2002), pp. 192-198
[51.]
R.C.B. Alonso, L.G. Cunha, G.M. Correr, et al.
Association of photoactivation methods and low modulus liners on marginal adaptation of composite restorations.
Acta Odontol Scand, 62 (2004), pp. 298-304
[52.]
L.G. Cunha, M.A.C. Sinhorei, S. Consani, L.C. Sobrinho.
Effect of different curing methods on the polymerization depth of a light-activated composite.
Oper Dent, 28 (2003), pp. 155-159
[53.]
L.G. Cunha, R.C.B. Alonso, G. Correr, W. Cunha, L. Correr-Sobrinho, M.A. Sinhoreti.
Effect of different photoactivation methods on the bond strength of composite resin restorations by push-out test.
Quintessence international., 39 (2008), pp. 243-249
[54.]
R.C. Alonso, L.G. Cunha, G.M. Correr, W.C. Brandt, L. Correr-Sobrinho, M.A.C. Sinhoreti.
Relationship between bond strength and marginal and internal adaptation of composite restorations photocured by different methods.
Acta Odontol Scand, 64 (2006), pp. 306-313
[55.]
S. Uno, T. Tanaka, A. Natzuizak, T. Abo.
Effect of slow-curing on cavity wall adaptation using a new intensity-changeable light source.
Dent Mater, 19 (2003), pp. 147-152
[56.]
C. Poggio, M. Lombardini, S. Gaviati, M. Chiesa.
Evaluation of vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes.
J Conserv Dent, 15 (2012), pp. 237-241
[57.]
V.P. Feitosa, A.P. Fugolin, A.B. Correr, L. Correr-Sobrinho, S. Consani, T.F. Watson, M.A. Sinhoreti, S. Sauro.
Effects of different photo-polymerization protocols on resindentine μTBS, mechanical properties and cross-link density of a nano-filled resin composite.
J Dent, 40 (2012), pp. 802-809
Copyright © 2013. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile