covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Expresión de Formas Solubles de MMP-14 y CXCL12 en Periodontitis Crónica Progr...
Información de la revista
Vol. 2. Núm. 2.
Páginas 46-49 (agosto 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 2. Núm. 2.
Páginas 46-49 (agosto 2009)
Open Access
Expresión de Formas Solubles de MMP-14 y CXCL12 en Periodontitis Crónica Progresiva
Soluble Forms of MMP-14 and CXCL12 Expression in Progressive ChronicPeriodontitis
Visitas
1333
M. Hernández1,3,
Autor para correspondencia
mhernandezrios@gmail.com

Correspondencia autor.
, T. Tervahartiala2, O. Rivera3, A. Dezerega3, N. Dutzan3, L. Henríquez3, T. Sorsa2
1 Profesor Asistente, Departamento de Patología, Facultad de Odontología, Universidad de Chile. Chile
2 Departamento de Enfermedades Orales y Maxilofaciales, Hospital Central Helsinki, Instituto de Odontología, Universidad de Helsinki, Helsinki, Finlandia
3 Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile. Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La perdida de tejidos de soporte durante la periodontitis crónica se asocia con la infiltración de leucocitos inflamatorios y la expresión desregulada de MMPs. CXCL12 es una potente quimioquina, mientras que MMP-14 presenta actividad colagenolitica y además es capaz de activar a otras colagenasas, como las MMPs -8 y -13. En este estudio analizamos la expresión de MMP-14 y CXCL12 en FCG de sujetos con periodontitis crónica progresiva.

Materiales y métodos

Se seleccionaron sujetos con periodontitis crónica progresiva y se tomaron muestras de FCG de sitios activos e inactivos (N=34). Mediante immunowestern blot se caracterizaron las formas solubles de la MMP-14 y CXCL12. La MMP-14 se cuantificó mediante densitometria, mientras que los niveles de CXCL12 se determinaron mediante ELISA.

Resultados

CXCL12 y MMP-14 se identificaron en todos los sujetos con progresión. En sitios activos la MMP-14 soluble demostró una tendencia a aumentar y se encontró una fuerte correlación positiva entre MMP-14 y CXCL12, mientras que en sitios inactivos no se encontró correlación alguna.

Conclusión

MMP-14 aumenta conjuntamente con CXCL12 a nivel de sitios activos y esta asociación podría estar relacionada con la perdida activa de soporte periodontal.

Palabras clave:
MMP-14
CXCL12
periodontitis crónica progresiva
Abstract

Support tissue loss during chronic periodontitis is associated with inflammatory leukocyte infiltrates and upregulation of MMP expression. CXCL12 is a potent leukocyte chemoattractant and MMP-14 is a collagenase capable to activate other collagenases such as MMPs -8 and -13. In this study we analyzed the expression of MMP-14 and CXCL12 in GCF of subjects with progressive chronic periodontitis.

Materials and methods

Chronic periodontitis subjects undergoing disease progression were selected. GCF samples were collected from active and inactive sites (N=34). Soluble MMP-14 and CXCL12 forms were characterized by immunowestern blot. MMP-14 was quantified by densitometric analysis and CXCL12 levels were determined by ELISA.

Results

In active sites, soluble MMP-14 showed a tendency to increase and a strong positive correlation was found between MMP-14 and CXCL12, whereas in inactive sites, no correlation was found.

Conclusions

MMP-14 increases together with CXCL12 in active sites and thus, interactions between these mediators could be associated with active loss of tooth support tissues.

Key words:
MMP-14
CXCL12
progressive chronic periodontitis
El Texto completo está disponible en PDF
Referencias bibliográficas
[1.]
M. Dahan, B. Nawrocki, R. Elkaim, et al.
Expression of matrix metalloproteinases in healthy and diseased human gingiva.
J Clin Periodontol, 28 (2001), pp. 128-136
[2.]
J.M. Goodson, A.D. Haffajee, S.S. Socransky.
The relationship between attachment level loss and alveolar bone loss.
J Clin Periodontol, 11 (1984), pp. 348-359
[3.]
S. Jepsen, I.N. Springer, A. Buschmann, J. Hedderich, Y. Acil.
Elevated levels of collagen crosslink residues in gingival tissues and crevicular fluid of teeth with periodontal disease.
Eur J Oral Sci, 111 (2003), pp. 198-202
[4.]
R.A. Ashley.
Clinical trials of a matrix metalloproteinase inhibitor in human periodontal disease. SDD Clinical Research Team.
Ann N Y Acad Sci, 30 (1999), pp. 335-346
[5.]
M. Kiili, S.W. Cox, H.Y. Chen, et al.
Collagenase-2 (MMP-8) and collagenase-3 (MMP-13) in adult periodontitis: molecular forms and levels in gingival crevicular fluid and immunolocalisation in gingival tissue.
J Clin Periodontol, 29 (2002), pp. 224-232
[6.]
T. Tervahartiala, E. Pirila, A. Ceponis, et al.
The in vivo expression of the collagenolytic matrix metalloproteinases (MMP-2, -8 -13, and -14) and matrilysin (MMP-7) in adult and localized juvenile periodontitis.
J Dent Res, 79 (2000), pp. 1969-1977
[7.]
T. Ohshiba, C. Miyaura, M. Inada, A. Ito.
Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis.
Br J Cancer, 88 (2003), pp. 1318-1326
[8.]
C.M. Overall.
Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites.
Mol Biotechnol, 22 (2002), pp. 51-86
[9.]
A.R. Folgueras, A.M. Pendas, L.M. Sanchez, C. Lopez-Otin.
Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies.
Int J Dev Biol, 48 (2004), pp. 411-424
[10.]
J.M. Holopainen, J.A. Moilanen, T. Sorsa, et al.
Activation of matrix metalloproteinase-8 by membrane type 1-MMP and their expression in human tears after photorefractive keratectomy.
Invest Ophthalmol Vis Sci, 44 (2003), pp. 2550-2556
[11.]
V. Knauper, H. Will, C. Lopez-Otin, et al.
Cellular mechanisms for human procollagenase- 3 (MMP-13) activation Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme.
J Biol Chem, 271 (1996), pp. 17124-17131
[12.]
P. Maisi, K. Prikk, R. Sepper, et al.
Soluble membrane-type 1 matrix metalloproteinase (MT1-MMP) and gelatinase A (MMP-2) in induced sputum and bronchoalveolar lavage fluid of human bronchial asthma and bronchiectasis.
APMIS, 110 (2002), pp. 771-782
[13.]
L.M. Wright, W. Maloney, X. Yu, L. Kindle, P. Collin-Osdoby, P. Osdoby.
Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts.
[14.]
A.M. Havens, E. Chiu, M. Taba, et al.
Stromal-derived factor-1alpha (CXCL12) levels increase in periodontal disease.
J Periodontol, 79 (2008), pp. 845-853
[15.]
H.M. Lee, L.M. Golub, J. Cao, et al.
CMT-3, a non-antimicrobial tetracycline (TC), inhibits MT1-MMP activity: relevance to cancer.
Curr Med Chem, 8 (2001), pp. 257-260
[16.]
P. Mantyla, M. Stenman, D. Kinane, et al.
Monitoring periodontal disease status in smokers and nonsmokers using a gingival crevicular fluid matrix metalloproteinase-8- specific chairside test.
J Periodontal Res, 41 (2006), pp. 503-512
[17.]
P. Mantyla, M. Stenman, D.F. Kinane, et al.
Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis.
J Periodontal Res, 38 (2003), pp. 436-439
[18.]
T. Sorsa, P. Mantyla, H. Ronka, et al.
Scientific basis of a matrix metalloproteinase-8 specific chair-side test for monitoring periodontal and peri-implant health and disease.
Ann N Y Acad Sci, 878 (1999), pp. 130-140
[19.]
M. Hernandez, B. Martinez, J.M. Tejerina, M.A. Valenzuela, J. Gamonal.
MMP-13 and TIMP-1 determinations in progressive chronic periodontitis.
J Clin Periodontol, 34 (2007), pp. 729-735
[20.]
M. Hernández, M.A. Valenzuela, C. Lopez-Otin, et al.
Matrix metalloproteinase-13 is highly expressed in destructive periodontal disease activity.
J Periodontol, 77 (2006), pp. 1863-1870
[21.]
A.D. Haffajee, S.S. Socransky, J.M. Goodson.
Comparison of different data analyses for detecting changes in attachment level.
J Clin Periodontol, 10 (1983), pp. 298-310
[22.]
T. Sorsa, L. Tjaderhane, Y.T. Konttinen, et al.
Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation.
Ann Med, 38 (2006), pp. 306-321
[23.]
H. Birkedal-Hansen.
Role of matrix metalloproteinases in human periodontal diseases.
J Periodontol, 64 (1993), pp. 474-484
[24.]
S. Villalba, O. Salvucci, Y. Aoki, et al.
Serum inactivation contributes to the failure of stromalderived factor-1 to block HIV-I infection in vivo.
J Leukoc Biol, 74 (2003), pp. 880-888
[25.]
T. Sorsa, L. Tjaderhane, T. Salo.
Matrix metalloproteinases (MMPs) in oral diseases.
[26.]
T. Ingman, T. Sorsa, J. Michaelis, Y.T. Konttinen.
Matrix metalloproteinases-1 -3, and -8 in adult periodontitis in situ. An immunohistochemical study.
Ann N Y Acad Sci, 732 (1994), pp. 459-461
[27.]
L.M. Golub, T. Sorsa, H.M. Lee, et al.
Doxycycline inhibits neutrophil (PMN)-type matrix metalloproteinases in human adult periodontitis gingiva.
J Clin Periodontol, 22 (1995), pp. 100-109
[28.]
T. Ingman, T. Tervahartiala, Y. Ding, et al.
Matrix metalloproteinases and their inhibitors in gingival crevicular fluid and saliva of periodontitis patients.
J Clin Periodontol, 23 (1996), pp. 1127-1132
[29.]
D.V. Rozanov, A.Y. Strongin.
Membrane type-1 matrix metalloproteinase functions as a proprotein self-convertase Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms.
J Biol Chem, 278 (2003), pp. 8257-8260
[30.]
G.A. McQuibban, G.S. Butler, J.H. Gong, et al.
Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1.
J Biol Chem, 276 (2001), pp. 43503-43508
[31.]
S. Singh, U.P. Singh, W.E. Grizzle, J.W. Lillard Jr..
CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion.
Lab Invest, 84 (2004), pp. 1666-1676
[32.]
P.A. Hill, A.J. Docherty, K.M. Bottomley, et al.
Inhibition of bone resorption in vitro by selective inhibitors of gelatinase collagenase.
Biochem J, 308 (1995), pp. 167-175
[33.]
P.A. Hill, G. Murphy, A.J. Docherty, et al.
The effects of selective inhibitors of matrix metalloproteinases (MMPs) on bone resorption and the identification of MMPs and TIMP- 1 in isolated osteoclasts.
J Cell Sci, 107 (1994), pp. 3055-3064
Copyright © 2009. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Opciones de artículo