covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Linfocitos T Reguladores y Periodontitis
Información de la revista
Vol. 2. Núm. 2.
Páginas 86-90 (agosto 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 2. Núm. 2.
Páginas 86-90 (agosto 2009)
Open Access
Linfocitos T Reguladores y Periodontitis
Regulatory T Cells and Periodontal Disease
Visitas
3084
L. Carré1,
Autor para correspondencia
lizzycarre@gmail.com

Correspondencia autor: Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile. Olivos 943 – Independencia. Santiago, Chile. Fono: (56-2) 978 18 33. Fax: (56-2) 978 18 39.
, N. Dutzan2, S. Lavandero3, J. Gamonal4
1 Cirujano-Dentista, Alumna Magister en Cs. Odontológicas mención Periodontología, Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile. Chile
2 Cirujano-Dentista, Magister en Cs. Odontológicas mención Periodontología, Profesor asistente Área de Periodoncia, Laboratorio de Biología Periodontal, Departamento de Odontología Conservadora, Facultad de Odontología, Universidad de Chile. Chile
3 Químico Farmacéutico, Doctor en Bioquímica, Profesor Titular, Centro de Estudios Moleculares de la Célula, Facultad de Cs. Químicas y Farmacéuticas, Universidad de Chile. Chile
4 Cirujano-Dentista, Especialista en Periodoncia, Magister y Doctor en Cs. Odontológicas, Director del Departamento de Odontología Conservadora, Facultad de Odontología, Universidad de Chile. Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La enfermedad periodontal requiere de un hospedero susceptible para su desarrollo y progresión. Dentro de las características del hospedero se encuentra la respuesta de células T reguladoras, que proveen de tolerancia frente antígenos propios, pero a la vez, participa durante las enfermedades infecciosas y tumorales como mecanismos de evasión de la respuesta inmune efectora. En infecciones virales, parasitarias y bacterianas se ha visto que los linfocitos T reguladores (Tregs) generan la persistencia de la infección en el tiempo y son responsables de muchos de los cambios patológicos de estas. Investigaciones recientes en enfermedad periodontal indican que se encuentran presentes en gran cantidad, pero su rol en la patogénesis de la enfermedad se encuentra en estudio. Esta revisión muestra los resultados de los estudios publicados en el área de periodoncia, que señalan una posible asociación entre los Tregs y la infección periodontal.

Palabras clave:
L Linfocitos T reguladores
periodontitis
tolerancia
Abstract

Periodontal disease requires a susceptible host for it's development and progression. One of the characteristics of the host is the regulatory response that give tolerance against own antigens, but at the same time, is used during infectious and tumoral diseases as a mechanism of evasion of the immune response. In viral, parasitic and bacterial infections regulatory T cells (Tregs) cause persistence of the infection, and they are responsible of many of the pathologic changes. Recent investigations in periodontal disease show that Tregs are present in a great quantity, but it's role is in current study. This review shows the results of published studies in periodontics that lead to a possible association between Tregs and periodontal infection.

Key words:
Regulatory T cells
periodontal disease
tolerance
El Texto completo está disponible en PDF
Referencias bibliográficas
[1.]
S.S. Socransky, A.D. Haffajee.
The bacterial etiology of destructive periodontal disease: current concepts.
J periodontol, 63 (1992), pp. 322-331
[2.]
S.S. Socransky, A.D. Haffajee, M.A. Cugini, C. Smith, R.L. Kent Jr..
Microbial complexes in subgingival plaque.
J Clin Periodontol, 25 (1998), pp. 134-144
[3.]
T. Nakajima, K. Ueki-Maruyama, T. Oda, et al.
Regulatory T-cells Infiltrate Periodontal Disease Tissues.
J Dent Res, 84 (2005), pp. 639-643
[4.]
H. Ito, T. Honda, T. Oda, et al.
Gene expresión analysis of the CD4+ Tcell clones derived from gingival tissues of periodontitis patients.
Oral Microbiol Immunol, 20 (2005), pp. 382-386
[5.]
T. Okui, H. Ito, T. Honda, R. Amanuma, H. Yoshie, K. Yamazaki.
Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions.
Oral Microbiol Immunol., 23 (2008), pp. 49-54
[6.]
C.R. Cardoso, G.P. Garlet, A.P. Moreira, et al.
Characterization of CD4+CD25+ natural regulatory T cells in the inflammatory infiltrate of human chronic periodontitis.
J Leukoc Biol., 84 (2008), pp. 311-318
[7.]
G. Garlet, W. Martins, B. Ferreira, et al.
Patterns of chemokines and chemokine receptors expression in different forms of human periodontal disease.
J Periodont Res, 38 (2003), pp. 210-217
[8.]
Suarez l, A. Ocampo, R. Dueñas, A. Rodriguez.
Relative proportions of T-cell subpopulations and cytokines that mediate and regulate the adaptative immune response in patients with immune response in patients with aggressive periodontitis.
J Periodontol, 75 (2004), pp. 1209-1210
[9.]
G. Atilla, G. Emingil, T. Köse, et al.
TGF-β1 gene polymorphisms in periodontal diseases.
Clin Biochem, 39 (2006), pp. 929-934
[10.]
R. Vernal, J.A. Garcia-Sanz.
Th17 and Treg cells, two new lymphocyte subpopulations with a key role in the immune response against infection.
Infect Disord Drug Targets., 8 (2008), pp. 207-220
[11.]
V. Ferreira, et al.
Inmunología Clinica.
Mediterraneo, (2004),
[12.]
J. Mjösberg, G. Berg, J. Ernerudh, C. Ekerfelt.
CD4+ CD25+ regulatory T cells in human pregnancy: development of a Treg-MLC-ELISPOT suppression assay and indications of paternal specific Tregs.
Immunology, 120 (2007), pp. 456-466
[13.]
R. Wang, G. Peng, H. Wang.
Regulatory T cells and Toll-like receptors in tumor immunity.
Seminars in Immunology, 18 (2006), pp. 136-142
[14.]
A. Escobar, M. López, A. Serrano, et al.
Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients.
Clinical and Experimental Immunology, 142 (2005), pp. 555-568
[15.]
F. Ghiringhelli, C. Meénard, F. Martin, L. Zitvogel.
The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression.
Immunological Reviews, 214 (2006), pp. 229-238
[16.]
Y. Mizukami, K. Kono, Y. Kawaguchi.
CCL17 and CCL22 chemokines within tumor microenviorement are related to accumulation of Foxp3+ regulatory T cells in gastric cancer.
Int J Cancer, 122 (2008), pp. 2286-2293
[17.]
M. Tan, P. Goedegebuure, B. Belt.
Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer.
J Immunol, 182 (2009), pp. 1746-1755
[18.]
S. Suvas, B. Rouse.
Treg control of antimicrobial T cell responses.
Current Opinion Immunology, 18 (2006), pp. 344-348
[19.]
C. Anderson, M. Oukka, V. Kuchro, D. Sacks.
CD4+CD25−Foxp3− Th1 cells are the source of IL-10–mediated immune suppression in chronic cutaneous leishmaniasis.
JEM, 204 (2007), pp. 285-297
[20.]
P. McGuirk, K. Mills.
Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases.
Trends in immunology, 23 (2002), pp. 450-456
[21.]
Z. Wang, J. Hong, W. Sun, et al.
Role of INFγ in induction of Foxp3 and conversion of CD4+CD25− T cells to CD4+Tregs.
The Journal of Clinical Investigation, 116 (2006), pp. 2434-2441
[22.]
L. Zang, Y. Zhao.
The regulation of Foxp3 expression in regulatory CD4+CD25+T cells: multiple pathways on the road.
J Cell Physiol, 211 (2007), pp. 590-597
[23.]
T. Nomura, S. Sakaguchi.
Foxp3 and AIRE in thymus-generated Treg cells: a link in selftolerance.
Nature Immunology, 8 (2007), pp. 333-334
[24.]
S. Zheng, J. Wang, J. Gray, et al.
IL2 is essential for TGF-β to convert naive CD4+CD25− cells to regulatory CD25+Foxp3+ T cells and for expansion of these cells.
The journal of immunology, 178 (2007), pp. 2018-2020
[25.]
S. Corintis, C. Albanesi, A. la Sala.
Regulatory activity of autocrine IL-10 on dendritic cell functions.
J Immunol, 166 (2001), pp. 4312-4318
[26.]
N. Kundu, A. Fulton.
Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis.
Cell Immunol, 180 (1997), pp. 55-61
[27.]
Y. Yue, R. Dummer, R. Geertsen, et al.
Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I HLA class-II and ICAM-1 molecules.et al.
Int. J. Cancer, 71 (1997), pp. 630
[28.]
R. Zeidler, G. Eissner, P. Meissner, et al.
Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10.
Blood, 90 (1997), pp. 2390-2397
[29.]
S. Salek-Ardakani, J.R. Arrand, M. Mackett.
Epstein-Barr virus encoded interleukin-10 inhibits HLAclass I ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBVJ, et al.
Virology, 304 (2002), pp. 342-351
[30.]
S. Caspar-Bauguil, B. Puissant, D. Nazzal, et al.
Chlamydia pneumoniae induces interleukin- 10 production that down-regulates major histocompatibility complex class I expression.
Inf Dis, 182 (2000), pp. 1394-1401
[31.]
J. Huehn, A. Hamann.
Homing to suppress: address codes for Treg migration.
Trends Immunol, 26 (2005), pp. 632-636
[32.]
Ahern D, Lloyd CM, Robinson DS. Chemokine responsiveness of CD4+CD25+ regulatory and CD4+CD25- T cells from atopic and nonatopic donors. Allergy 2009 Feb 6 online.
[33.]
M. Benson, K. Pino-Lagos, M. Rosemblat, R. Noelle.
All-trans retinoic acid mediates ehanced Treg cell growth, differentiation y gut homing in the face of high levels of co-stimulation.
JEM, 204 (2004), pp. 1765-1770
[34.]
A. Gürkan, G. Emingil, S. Cinarcik, et al.
Gingival crevicular fluid transformin growth factor- β1 in several forms of periodontal disease.
Arch Oral Biol, 51 (2006), pp. 906-912
[35.]
M. Oukka.
Interplay between pathogenic Th17 and regulatory T cells.
Ann Rheum Dis, 66 (2007), pp. iii87-iii90
[36.]
A. Ejeil, F. Gaultier, S. Igondjo-Tchen.
Are cytokines linked to collagen breakdown during periodontal disease progression?.
J Periodontol, 74 (2003), pp. 196-201
[37.]
R. Vernal, N. Dutzan, A. Chaparro, J. Puente, M. Antonieta Valenzuela, J. Gamonal.
Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis.
J Clin Periodontol., 32 (2005), pp. 383-389
[38.]
T. Honda, Y. Aoki, N. Takahashi, et al.
Elevated expression of IL-17 and IL-12 genes in chronic inflammatory periodontal disease.
Clinica Chimica Acta, 395 (2008), pp. 137-141
[39.]
C. Cardoso, G. Garlet, G. Grippa, et al.
Evidence of the presence of T helper type 17 cells in chronic lesion of human periodontal disease.
Oral Microbiol Immunol, 24 (2009), pp. 1-6
Copyright © 2009. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Descargar PDF
Opciones de artículo