covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral The TH17 vs. TREG Imbalance in the Pathogenesis of Periodontitis: New Approach f...
Información de la revista
Vol. 1. Núm. 2.
Páginas 70-72 (agosto 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 1. Núm. 2.
Páginas 70-72 (agosto 2008)
Open Access
The TH17 vs. TREG Imbalance in the Pathogenesis of Periodontitis: New Approach for Dichotomy TH1 vs. TH2
Visitas
2134
A. Dezerega1,
Autor para correspondencia
adezerega@odontologia.uchile.cl

Correspondencia autor: Laboratorio de Biología Periodontal, Departamento de Odontología Conservadora, Facultad de Odontología, Universidad de Chile. Chile. Olivos 943, Independencia. Santiago – Chile. Fono: 56 2 978 18 33 Fax: 56 2 978 18 39.
, S. Maggiolo1, M. Garrido1, N. Dutzan2
1 Instructor Área de Endodoncia, Depto. de Odontología Conservadora, Facultad de Odontología, Universidad de Chile. Chile
2 Ayudante Área de Periodoncia, Depto. de Odontología Conservadora, Facultad de Odontología, Universidad de Chile. Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Abstract

For decades several authors have directed their efforts to elucidate the nature of the immune response in periodontitis. The subject has been matter of controversy, and answers remain unclear. The present review intends to summarize the character of the inflammatory response in periodontitis, with emphasis on the T helper imbalance produced during the development of the disease.

Key words:
Periodontitis
immune response
Th1
Th2
Th17
Treg
El Texto completo está disponible en PDF
References
[1.]
G. Salvi, N. Lang.
Host response modulation in the manegement of periodontal diseases.
J Clin Periodontol, 32 (2005), pp. 108-129
[2.]
S.S. Socransky, A.D. Haffajee, M.A. Cugini, C. Smith, R.L. Kent Jr..
Microbial complexes in subgingival plaque.
J Clin Periodontol, 25 (1998), pp. 134-144
[3.]
A.D. Haffaje, S.S. Socransky.
Microbial etiological agents of destructive periodontal diseases.
Periodontology 2000, 5 (1994), pp. 78-111
[4.]
S.G. Grossi, J.J. Zambon, A.W. Ho, et al.
Assessment of risk for periodontal disease. I. Risk indicators for attachment loss.
J Periodontol, 65 (1994), pp. 260-0267
[5.]
S. Offenbacher.
Periodontal diseases: pathogenesis.
Ann Periodontol, 1 (1996), pp. 821-878
[6.]
R.C. Page, K.S. Kornman.
The pathogenesis of human periodontitis: and introduction.
Periodontol 2000, 14 (1997), pp. 9-11
[7.]
P.J. Baker.
The role of immune responses in bone loss during periodontal diseases.
Microbes Infect, 2 (2000), pp. 1181-1192
[8.]
E. Gemmel, K. Yamazaki, G.J. Seymour.
Destructive periodontitis lesions are determined by the nature of lymphocytic response.
Crit Rev Oral Biol Med, 13 (2002), pp. 17-34
[9.]
A.J. Delina, T.E. Van Dyke.
Origin and function of the cellular components in gingival crevice fluid.
Periodontology, 31 (2000), pp. 55-76
[10.]
E. Gemmel, G.J. Seymour.
Immunregulatory control of Th1/Th2 cytokine profiles in periodontal diseases.
Periodontology 2000, 35 (2004), pp. 21-41
[11.]
T.R. Mosmann, R.L. Coffman.
TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties.
Annu Rev Immunol, 7 (1989), pp. 145-173
[12.]
A.K. Abbas, K.M. Murphy, A. Sher.
Functional diversity of helper T lymphocytes.
Nature, 383 (1996), pp. 787-793
[13.]
L.W. Poulter, G.J. Seymour, O. Duke, G. Janossy, G. Panayi.
Immunohistological analysis of delayed-type hypersensitivity in man.
Cell Immunol, 74 (1982), pp. 358-369
[14.]
G.J. Seymour, E. Gemmel, L.J. Walsh, R.N. Powell.
Immunohistological analysis of experimental gingivitis in humans.
Clin Exp Immunol, 71 (1988), pp. 132-137
[15.]
R.C. Page, H.E. Schroeder.
Pathogenesis of inflammatory periodontal disease. A summary of current work.
Lab Invest, 34 (1976), pp. 235-249
[16.]
G.J. Seymour, J.S. Greenspan.
The phenotypic characterization of lymphocyte subpopulations in established human periodontal disease.
J Periodontol, 14 (1979), pp. 29-46
[17.]
E. Gemmell, G.J. Seymour.
Cytokine profiles of cells extracted from humans with periodontal diseases.
J Dent Res, 77 (1998), pp. 16-26
[18.]
M. Pilon, C. Williams-Miller, D.S. Cox.
Interleukin-2 levels in gingival crevicular fluid in periodontitis.
J Dent Res, 70 (1991), pp. 550
[19.]
K. Fujihashi, Y. Kono, M. Yamamoto, et al.
Interleukin production by gingival mononuclear cells isolated from adult periodontitis patients.
J Dent Res, 70 (1991), pp. 550
[20.]
B. Sigusch, G. Klinger, E. Glockmann, H.U. Simon.
Early-onset and adult periodontitis associated with abnormal cytokine production by activated T lymphocytes.
J Periodontol, 69 (1998), pp. 1098-1104
[21.]
E. Gemmel, G.J. Seymour.
Modulation of immune resposes to periodontal bacteria.
Curr Opin Periodontol, (1994), pp. 28-38
[22.]
T. Aoyagi, M. Sugawara-Aoyagi, K. Yamazaki, K. Hara.
Interleukin 4 (IL-4) and IL-6-producing memory T-cells in peripheral blood and gingival tissues in periodontitis patients with high serum antibody titers to Porphyromonas gingivalis.
Oral Microbiol Immunol, 10 (1995), pp. 304-310
[23.]
K. Yamazaki, T. Nakajima, T. Aoyagi, K. Hara.
Immunohistological analysis of memory T lymphocytes and activated B lymphocytes in tissues with periodontal disease.
J Periodont Res, 28 (1994), pp. 324-334
[24.]
R.A. Reinhardt, R.W. Bolton, T.L. McDonald, L.M. DuBois, W.B. Kaldahl.
IgG subclasses in gingival crevicular fluid from active versus stable periodontal sites.
J Periodontol, 60 (1989), pp. 44-50
[25.]
G.J. Seymour, Gemmell, R.A. Reinhardt, J. Eastcott, M.A. Taubman.
Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms.
J Periodont Res, 28 (1993), pp. 478-486
[26.]
J.L. Ebersole, M.A. Taubman.
The protective nature of host responses in periodontal diseases.
Periodontol 2000, 5 (1994), pp. 112-141
[27.]
G.E. Salvi, J.D. Beck, S. Offenbacher.
PGE2, IL-1B and TNF-a responses in diabetics as modifiers of periodontal disease expression.
Ann Periodontol, 3 (1998), pp. 40-50
[28.]
D.J. Cua, J. Sherlock, Y. Chen, et al.
Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.
Nature, 421 (2003), pp. 744-748
[29.]
C.L. Langrish, Y. Chen, W.M. Blumenschein, et al.
IL-23 drives a pathogenic T cell population that induces autoimmune inflammation.
J Exp Med, 201 (2005), pp. 233-240
[30.]
R.A. Kastelein, C.A. Hunter, D.J. Cua.
Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation.
Annu Rev Immunol, 25 (2007), pp. 221-242
[31.]
C.T. Weaver, R.D. Hatton, P.R. Mangan, L.E. Harrington.
IL-17 family cytokines and the expanding diversity of effector T cell lineages.
Annu Rev Immunol, 25 (2007), pp. 821-852
[32.]
L.H. Glimcher, K.M. Murphy.
Lineage commitment in the immune system: the T helper lymphocyte grows up.
Genes Dev, 14 (2000), pp. 1693-1711
[33.]
I.I. Ivanov, B.S. McKenzie, L. Zhou, et al.
The orphan nuclear receptor RORyt directs the differentiation program of proinflammatory IL-17+ T helper cells.
Cell, 126 (2006), pp. 1121-1133
[34.]
E. Betteli, Y. Carrier, W. Gao, et al.
Reciprocal development pathways for the generation of pathogenic effector TH17 and regulatory T cells.
Nature, 441 (2006), pp. 235-238
[35.]
T. Korn, E. Betteli, W. Gao, et al.
IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.
Nature, 448 (2007), pp. 484-487
[36.]
Nurieva, X.O. Yang, G. Martinez, et al.
Essential autocrine regulation by IL-21 in the generation of inflammatory T cells.
Nature, 448 (2007), pp. 480-483
[37.]
L. Zhou, I.I. Ivanov, R. Spolski, et al.
IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and Il-23 pathways.
Nat Immunol, 10 (2007), pp. 1038-1488
[38.]
E.K. Deenick, S.G. Tangye.
IL-21: a new player in Th17-cell differentiation.
Immunol Cell Biol, 85 (2007), pp. 503-505
[39.]
S. Aggarwal, A.L. Gurney.
IL-17: prototype member of an emerging cytokine family.
J Leukoc Biol, 71 (2002), pp. 1-8
[40.]
M. Kawaguchi, M. Adachi, N. Oda, et al.
IL-17 cytokine family.
J Allergy Clin Immunol, 114 (2004), pp. 1265-1273
[41.]
J.K. Kolls, A. Linden.
Interleukin-17 family members and inflammation.
Immunity, 21 (2004), pp. 467-476
[42.]
T.A. Moseley, Haudenschild Dr, L. Rose, A.H. Reddi.
Interleukin-17 family and IL-17 receptors.
Cytokine Growth Factor Rev, 14 (2003), pp. 155-174
[43.]
S. Sakaguchi, M. Ono, R. Setoguchi, et al.
Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease.
[44.]
S. Sakaguchi.
Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses.
Annu Rev Immunol, 22 (2004), pp. 531-562
[45.]
W. Chen, et al.
Conversion of peripheral CD4+CD25+ naive T cells to CD4+CD25+ regulatory T cells by TGF-B induction of transcription factor Foxp3.
J Exp Med, 198 (2003), pp. 1875-1886
[46.]
M. Veldhoen, R.J. Hocking, C.J. Atkins, R.M. Locksley, B. Stockinger.
TGF-B in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.
Immunity, 24 (2006), pp. 179-186
[47.]
P.R. Mangan, L.E. Harrington, O’Quinn., et al.
Transforming growth factor-beta induces development of the T(H)17 lineage.
Nature, 441 (2006), pp. 231-234
[48.]
M.O. Li, Y.Y. Wan, R.A. Flavell.
T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation.
Immunity, 26 (2007), pp. 579-591
[49.]
D.T. Nardelli, et al.
Association of CD4+ CD25+ T cells with prevention of severe destructive arthritis in Borrelia burgdorferi-vaccinated and challenged gamma interferon-deficient mice treated with anti-interleukin-17 antibody.
Clin Diag Lab Immunol, 11 (2004), pp. 1075-1084
[50.]
B. Homey.
After TH1/TH2 now comes Treg/TH17: significance of T helper cells in immune response organization.
Hautarzt, 57 (2006), pp. 730-732
[51.]
V. Zappa, M. Reinking-Zappa, H. Garf, M. Espeland.
Cell populations and episodic periodontal attachment loss in humans.
J Clin Periodontol, 18 (1991), pp. 508-515
[52.]
R.B. Johnson, N. Wood, F.G. Serio.
Interleukin-11 and IL-17 and the pathogenesis of periodontal disease.
J Periodontol, 75 (2004), pp. 37-43
[53.]
K. Takahashi, T. Azuma, H. Motohira, D.F. Kinane, S. Kitetsu.
The potential role of interleukin-17 in the immunopathology of periodontal disease.
J Clin Periodontol, 32 (2005), pp. 369-374
[54.]
R. Vernal, N. Dutzan, A. Chaparro, J. Puente, M.A. Valenzuela, J. Gamonal.
Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from persons with chronic periodontitis.
J Clin Periodontol, 32 (2005), pp. 383-389
[55.]
A. Beklen, M. Ainola, M. Hukkanen, C. Gurgan, T. Sorsa, Y.T. Konttinen.
MMPs, IL-1 and TNF are regulated by IL-17 in periodontitiss.
J Dent Res, 86 (2007), pp. 347-351
[56.]
T. Nakajima, K. Ueki-Maruyama, T. Oda, et al.
Regulatory T-cells infiltrate periodontal disease tissues.
J Dent Res, 84 (2005), pp. 639-643
[57.]
H. Ito, T. Honda, H. Domon, et al.
Gene expression analysis of the CD4+ T-cell clones derived from gingival tissues of periodontitis patients.
Oral Microbiol Immunol, 20 (2005), pp. 382-386
[58.]
T. Okui, H. Ito, T. Honda, R. Amanuma, H. Yoshie, K. Yamazaki.
Characterization of CD4+ Foxp3+ T-cell clones established from chronic inflammatory lesions.
Oral Microbiol Immunol, 23 (2008), pp. 49-54
Copyright © 2008. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Opciones de artículo