covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Variabilidad de la Síntesis de RANKL por Linfocitos T frente a Distintos Seroti...
Información de la revista
Vol. 3. Núm. 1.
Páginas 19-23 (abril 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 3. Núm. 1.
Páginas 19-23 (abril 2010)
Open Access
Variabilidad de la Síntesis de RANKL por Linfocitos T frente a Distintos Serotipos Capsulares de Porphyromonas gingivalis
Variability in the RANKL Synthesis by T Lymphocytes in Response to Different Porphyromonas gingivalis Capsular Serotypes
Visitas
1691
M. Navarrete1, A. Silva2, M. Sanz3, R. Vernal1,
Autor para correspondencia
rvernal@uchile.cl

Correspondencia autor: Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile. Sergio Livingstone 943, Independencia, Santiago, Chile. Fono: 56-2-9781815 / Fax: 56-2-9781833.
1 Laboratorio de Biología Periodontal, Departamento de Odontología Conservadora, Facultad de Odontología, Universidad de Chile, Santiago, Chile
2 Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientí cas (CSIC), Madrid, España
3 Departamento de Estomatología III, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Propósito

Las periodontitis representan un grupo heterogéneo de infecciones periodontales cuya etiología son las bacterias residentes en el bio lm subgingival. Aunque este bio lm está constituido por una amplia variedad de especies bacterianas, sólo un número limitado de especies, como Porphyromonas gingivalis, se ha asociado a la etiología de la enfermedad. P. gingivalis expresa diversos factores de virulencia que pueden causar daño directo a los tejidos del hospedero; sin embargo, su mayor patogenicidad involucra la inducción de una respuesta inmuno-inflamatoria, durante la cual se secretan una amplia variedad de citoquinas, quimioquinas y mediadores inflamatorios que pueden inducir la destrucción de los tejidos de soporte de los dientes y la pérdida de ellos.

Método

En esta investigación, se evaluó si los distintos serotipos capsulares (K) de P. gingivalis pueden determinar los niveles de síntesis de RANKL, citoquina clave en la destrucción del hueso alveolar durante la periodontitis. Para ello, se cuanti caron los niveles de expresión de RANKL mediante PCR cuantitativa y los niveles de secreción mediante ELISA en linfocitos T activados en presencia de los serotipos capsulares K1-K6 de P. gingivalis, y estos se correlacionaron a los niveles de expresión de los factores de transcripción asociados a cada uno de los fenotipos de linfocitos efectores: Th1 (T-bet), Th2 (GATA-3), Th17 (RORC2) y Treg (Foxp3).

Resultados

Mayores niveles de expresión y secreción de RANKL fueron detectados en linfocitos T activados en presencia de los serotipos K1 y K2 de P. gingivalis, en comparación a los detectados ante los otros serotipos. Además, estos mayores niveles de RANKL se correlacionaron positivamente con los niveles de expresión de RORC2.

Conclusión

Estos datos demuestran que la síntesis de RANKL por linfocitos T se restringe a ciertos serotipos capsulares de P. gingivalis (K1 y K2) y permiten sugerir que los serotipos K1 y K2 de P. gingivalis podrían asociarse a la destrucción del hueso alveolar y a la pérdida de los dientes durante la periodontitis.

Palabras clave:
RANKL
Porphyromonas gingivalis
Th17
periodontitis
linfocitos T
Abstract
Aim

Periodontitis represents a heterogenic group of periodontal infections elicited by bacteria residing at the subgingival bio lm. Although this bio lm is constituted by a broad variety of bacterial species, only a limited number has been associated with the periodontitis aetiology, among them Porphyromonas gingivalis. P. gingivalis express a number of virulence factors that contribute to direct tissue damage; however, their pathogenicity relies mainly on the induction of a host immuno-inflammatory response. This leads to the release of a broad array of cytokines, chemokines and inflammatory mediators, which cause destruction of the tooth-supporting alveolar bone and ultimately tooth loss.

Method

In the present investigation, in order to determine whether different P. gingivalis serotypes might lead to a differential RANKL synthesis, a key cytokine involved in alveolar bone resorption, the mRNA expression and secretion of RANKL and the expression of transcription factors T-bet, GATA-3, RORC2 and Foxp3, the master-switch genes controlling the Th1, Th2, Th17, and Treg cell differentiation, respectively, were analyzed on human T cells activated with different P. gingivalis capsular (K) serotypes.

Results

T lymphocytes responding to P. gingivalis serotypes K1 or K2, but not to the other serotypes, led to an increased expression and secretion of RANKL. In addition, these higher RANKL levels correlate with RORC2 expression upon activation with K1 or K2 serotypes.

Conclusion

These data demonstrated that RANKL expression and secretion by T lymphocytes was restricted to particular P. gingivalis serotypes (namely K1 and K2), and allowed to suggest a link between these serotypes with alveolar bone destruction and teeth loosening during the periodontitis.

Key words:
RANKL
Porphyromonas gingivalis
Th17
periodontitis
T lymphocytes
El Texto completo está disponible en PDF
Referencias Bibliográficas
[1.]
G. Hajishengallis.
Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics?.
Microbes and Infection, 11 (2009), pp. 637-645
[2.]
S.C. Holt, J.L. Ebersole.
Porphyromonas gingivalis Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis.
Periodontology 2000, 38 (2005), pp. 72-122
[3.]
D. White, D. Mayrand.
Association of oral Bacteroides with gingivitis and adult periodontitis.
Journal of Periodontal Research, 16 (1981), pp. 259-265
[4.]
M. Sanz, L. Lau, D. Herrera, et al.
Methods of detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythensis in periodontal microbiology, with special emphasis on advanced molecular techniques: a review.
Journal of Clinical Periodontology, 31 (2004), pp. 1034-1047
[5.]
J.J. Zambon.
Periodontal diseases: microbial factors.
Annals of Periodontology, 1 (1996), pp. 879-925
[6.]
A.J. van Winkelhoff, T.J. van Steenbergen, J. de Graaff.
The role of black-pigmented Bacteroides in human oral infections.
Journal of Clinical Periodontology, 15 (1988), pp. 145-155
[7.]
A.J. van Winkelhoff, B.G. Loos, W.A. van der Reijden, et al.
Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction.
Journal of Clinical Periodontology, 29 (2002), pp. 1023-1028
[8.]
J. Slots, M. Ting.
Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment.
Periodontology, 20 (2000 1999), pp. 82-121
[9.]
S.S. Socransky, A.D. Haffajee.
Evidence of bacterial etiology: a historical perspective.
Periodontology 2000, 5 (1994), pp. 7-25
[10.]
J. Slots.
Bacterial speci city in adult periodontitis. A summary of recent work.
Journal of Clinical Periodontology, 13 (1986), pp. 912-917
[11.]
S.C. Holt, L. Kesavalu, S. Walker, et al.
Virulence factors of Porphyromonas gingivalis.
Periodontology 2000, 20 (1999), pp. 168-238
[12.]
S.S. Socransky, A.D. Haffajee, L.A. Ximenez-Fyvie, et al.
Ecological considerations in the treatment of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis periodontal infections.
Periodontology, 20 (2000 1999), pp. 341-362
[13.]
J.L. Dzink, S.S. Socransky, A.D. Haffajee.
The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases.
Journal of Clinical Periodontology, 15 (1988), pp. 316-323
[14.]
J.L. Dzink, A.C. Tanner, A.D. Haffajee, et al.
Gram negative species associated with active destructive periodontal lesions.
Journal of Clinical Periodontology, 12 (1985), pp. 648-659
[15.]
G.J. Seymour, P.J. Ford, M.P. Cullinan, et al.
Relationship between periodontal infections and systemic disease.
Clinical Microbiology and Infection, 13 (2007), pp. 3-10
[16.]
F.C. Gibson, H. Yumoto, Y. Takahashi, et al.
Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis.
Journal of Dental Research, 85 (2006), pp. 106-121
[17.]
K. Okuda, R. Kimizuka, S. Abe, et al.
Involvement of periodontopathic anaerobes in aspiration pneumonia.
Journal of Periodontology, 76 (2005), pp. 2154-2160
[18.]
K. Yamazaki, T. Honda, H. Domon, et al.
Relationship of periodontal infection to serum antibody levels to periodontopathic bacteria and inflammatory markers in periodontitis patients with coronary heart disease.
Clinical and Experimental Immunology, 149 (2007), pp. 445-452
[19.]
R. Leon, N. Silva, A. Ovalle, et al.
Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor.
Journal of Periodontology, 78 (2007), pp. 1249-1255
[20.]
A. Contreras, J.A. Herrera, J.E. Soto, et al.
Periodontitis is associated with preeclampsia in pregnant women.
Journal of Periodontology, 77 (2006), pp. 182-188
[21.]
F.C. Gibson, C.A. Genco.
Prevention of Porphyromonas gingivalisinduced oral bone loss following immunization with gingipain R1.
Infection and Immunity, 69 (2001), pp. 7959-7963
[22.]
P.S. Rajapakse, N.M. O’Brien-Simpson, N. Slakeski, et al.
Immunization with the RgpA-Kgp proteinase-adhesin complexes of Porphyromonas gingivalis protects against periodontal bone loss in the rat periodontitis model.
Infection and Immunity, 70 (2002), pp. 2480-2486
[23.]
T. Nakagawa, T. Sims, Q. Fan, et al.
Functional characteristics of antibodies induced by Arg-gingipain (HRgpA) and Lys-gingipain (Kgp) from Porphyromonas gingivalis.
Oral Microbiology and Immunology, 16 (2001), pp. 202-211
[24.]
A.J. van Winkelhoff, B.J. Appelmelk, N. Kippuw, et al.
K-antigens in Porphyromonas gingivalis are associated with virulence.
Oral Microbiology and Immunology, 8 (1993), pp. 259-265
[25.]
M.L. Laine, B.J. Appelmelk, A.J. van Winkelhoff.
Novel polysaccharide capsular serotypes in Porphyromonas gingivalis.
Journal of Periodontal Research, 31 (1996), pp. 278-284
[26.]
M.L. Laine, A.J. van Winkelhoff.
Virulence of six capsular serotypes of Porphyromonas gingivalis in a mouse model.
Oral Microbiology and Immunology, 13 (1998), pp. 322-325
[27.]
M.L. Laine, B.J. Appelmelk, A.J. van Winkelhoff.
Prevalence and distribution of six capsular serotypes of Porphyromonas gingivalis in periodontitis patients.
Journal of Dental Research, 76 (1997), pp. 1840-1844
[28.]
J.V. Califano, R.E. Schifferle, J.C. Gunsolley, et al.
Antibody reactive with Porphyromonas gingivalis serotypes K1-6 in adult and generalized earlyonset periodontitis.
Journal of Periodontology, 70 (1999), pp. 730-735
[29.]
K. Dierickx, M. Pauwels, M.L. Laine, et al.
Adhesion of Porphyromonas gingivalis serotypes to pocket epithelium.
Journal of Periodontology, 74 (2003), pp. 844-848
[30.]
S.I. Farquharson, G.R. Germaine, G.R. Gray.
Isolation and characterization of the cell-surface polysaccharides of Porphyromonas gingivalis ATCC 53978.
Oral Microbiology and Immunology, 15 (2000), pp. 151-157
[31.]
R.E. Schifferle, M.S. Reddy, J.J. Zambon, et al.
Characterization of a polysaccharide antigen from Bacteroides gingivalis.
J Immunol, 143 (1989), pp. 3035-3042
[32.]
G. d’Empaire, M.T. Baer, F.C. Gibson.
The K1 serotype capsular polysaccharide of Porphyromonas gingivalis elicits chemokine production from murine macrophages that facilitates cell migration.
Infection and Immunity, 74 (2006), pp. 6236-6243
[33.]
G. Sundqvist, D. Figdor, L. Hanstrom, et al.
Phagocytosis and virulence of different strains of Porphyromonas gingivalis.
Scandinavian Journal of Dental Research, 99 (1991), pp. 117-129
[34.]
R. Vernal, A. Chaparro, R. Graumann, et al.
Levels of cytokine receptor activator of nuclear factor kappaB ligand in gingival crevicular uid in untreated chronic periodontitis patients.
Journal of Periodontology, 75 (2004), pp. 1586-1591
[35.]
R. Vernal, N. Dutzan, M. Hernandez, et al.
High expression levels of receptor activator of nuclear factor-kappa B ligand associated with human chronic periodontitis are mainly secreted by CD4+ T lymphocytes.
Journal of Periodontology, 77 (2006), pp. 1772-1780
[36.]
T. Crotti, M.D. Smith, R. Hirsch, et al.
Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis.
Journal of Periodontal Research, 38 (2003), pp. 380-387
[37.]
D. Liu, J.K. Xu, L. Figliomeni, et al.
Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction.
International Journal of Molecular Medicine, 11 (2003), pp. 17-21
[38.]
R. Vernal, A. Dezerega, N. Dutzan, et al.
RANKL in human periapical granuloma: possible involvement in periapical bone destruction.
Oral Diseases, 12 (2006), pp. 283-289
[39.]
R. Vernal, R. Leon, A. Silva, et al.
Differential cytokine expression by human dendritic cells in response to different Porphyromonas gingivalis capsular serotypes.
Journal of Clinical Periodontology, 36 (2009), pp. 823-829
[40.]
R. Vernal, R. Leon, D. Herrera, et al.
Variability in the response of human dendritic cells stimulated with Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans.
Journal of Periodontal Research, 43 (2008), pp. 689-697
[41.]
R. Vernal, E. Velasquez, J. Gamonal, et al.
Expression of proin ammatory cytokines in osteoarthritis of the temporomandibular joint.
Archives of Oral Biology, 53 (2008), pp. 910-915
[42.]
G.E. Salvi, C.E. Brown, K. Fujihashi, et al.
In ammatory mediators of the terminal dentition in adult and early onset periodontitis.
Journal of Periodontal Research, 33 (1998), pp. 212-225
[43.]
P.J. Baker, M. Dixon, R.T. Evans, et al.
CD4(+) T cells and the proin ammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice.
Infection and Immunity, 67 (1999), pp. 2804-2809
[44.]
N. Dutzan, R. Vernal, M. Hernandez, et al.
Levels of interferongamma and transcription factor T-bet in progressive periodontal lesions in patients with chronic periodontitis.
Journal of Periodontology, 80 (2009), pp. 290-296
[45.]
J.L. Ebersole, M.A. Taubman.
The protective nature of host responses in periodontal diseases.
Periodontology, 5 (2000 1994), pp. 112-141
[46.]
Y. Houri-Haddad, A. Wilensky, L. Shapira.
T-cell phenotype as a risk factor for periodontal disease.
Periodontology, 45 (2000 2007), pp. 67-75
[47.]
A.R. Pradeep, Y. Roopa, P.P. Swati.
Interleukin-4, a T-helper 2 cell cytokine, is associated with the remission of periodontal disease.
Journal of Periodontal Research, 43 (2008), pp. 712-716
[48.]
O. Takeichi, J. Haber, T. Kawai, et al.
Cytokine profiles of T-lymphocytes from gingival tissues with pathological pocketing.
Journal of Dental Research, 79 (2000), pp. 1548-1555
[49.]
E. Gemmell, G.J. Seymour.
Cytokines and T cell switching.
Critical Reviews in Oral Biology & Medicine, 5 (1994), pp. 249-279
[50.]
J. Bartova, Z. Kratka-Opatrna, J. Prochazkova, et al.
Th1 and Th2 cytokine profile in patients with early onset periodontitis and their healthy siblings.
Mediators of In ammation, 9 (2000), pp. 115-120
[51.]
S.S. Manhart, R.A. Reinhardt, J.B. Payne, et al.
Gingival cell IL-2 and IL-4 in early-onset periodontitis.
Journal of Periodontology, 65 (1994), pp. 807-813
[52.]
B. Sigusch, G. Klinger, E. Glockmann, et al.
Early-onset and adult periodontitis associated with abnormal cytokine production by activated T lymphocytes.
Journal of Periodontology, 69 (1998), pp. 1098-1104
[53.]
S.J. Fokkema, B.G. Loos, C. Slegte, et al.
A type 2 response in lipopolysaccharide (LPS)-stimulated whole blood cell cultures from periodontitis patients.
Clinical and Experimental Immunology, 127 (2002), pp. 374-378
[54.]
P.L. Yun, A.A. Decarlo, C. Collyer, et al.
Hydrolysis of interleukin-12 by Porphyromonas gingivalis major cysteine proteinases may affect local gamma interferon accumulation and the Th1 or Th2 T-cell phenotype in periodontitis.
Infection and Immunity, 69 (2001), pp. 5650-5660
[55.]
R.A. Reinhardt, T.L. McDonald, R.W. Bolton, et al.
IgG subclasses in gingival crevicular uid from active versus stable periodontal sites.
Journal of Periodontology, 60 (1989), pp. 44-50
[56.]
S.L. Gaffen, G. Hajishengallis.
A new in ammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17.
Journal of Dental Research, 87 (2008), pp. 817-828
[57.]
R. Vernal, N. Dutzan, A. Chaparro, et al.
Levels of interleukin-17 in gingival crevicular uid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis.
Journal of Clinical Periodontology, 32 (2005), pp. 383-389
[58.]
H. Ohyama, N. Kato-Kogoe, A. Kuhara, et al.
The involvement of IL- 23 and the Th17 pathway in periodontitis.
Journal of Dental Research, 88 (2009), pp. 633-638
[59.]
C.R. Cardoso, G.P. Garlet, G.E. Crippa, et al.
Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease.
Oral Microbiology and Immunology, 24 (2009), pp. 1-6
[60.]
K. Takahashi, T. Azuma, H. Motohira, et al.
The potential role of interleukin-17 in the immunopathology of periodontal disease.
Journal of Clinical Periodontology, 32 (2005), pp. 369-374
[61.]
T. Nakajima, K. Ueki-Maruyama, T. Oda, et al.
Regulatory T-cells infiltrate periodontal disease tissues.
Journal of Dental Research, 84 (2005), pp. 639-643
[62.]
C.R. Cardoso, G.P. Garlet, A.P. Moreira, et al.
Characterization of CD4+CD25+ natural regulatory T cells in the in ammatory infiltrate of human chronic periodontitis.
Journal of Leukocyte Biology, 84 (2008), pp. 311-318
[63.]
T. Okui, H. Ito, T. Honda, et al.
Characterization of CD4+ FOXP3+ T-cell clones established from chronic in ammatory lesions.
Oral Microbiology and Immunology, 23 (2008), pp. 49-54
[64.]
N. Silva, N. Dutzan, M. Hernandez, et al.
Characterization of progressive periodontal lesions in chronic periodontitis patients: levels of chemokines, cytokines, matrix metalloproteinase-13, periodontal pathogens and in ammatory cells.
Journal of Clinical Periodontology, 35 (2008), pp. 206-214
[65.]
M. Hernandez, M.A. Valenzuela, C. Lopez-Otin, et al.
Matrix metalloproteinase-13 is highly expressed in destructive periodontal disease activity.
Journal of Periodontology, 77 (2006), pp. 1863-1870
[66.]
N. Dutzan, J. Gamonal, A. Silva, et al.
Over-expression of forkhead box P3 and its association with receptor activator of nuclear factor-kappa B ligand, interleukin (IL) -17, IL-10 and transforming growth factor-beta during the progression of chronic periodontitis.
Journal of Clinical Periodontology, 36 (2009), pp. 396-403
[67.]
A.N. Kopitar, N. Ihan Hren, A. Ihan.
Commensal oral bacteria antigens prime human dendritic cells to induce Th1.
Th2 or Treg differentiation. Oral Microbiology and Immunology, 21 (2006), pp. 1-5
[68.]
T. Kikuchi, C.L. Hahn, S. Tanaka, et al.
Dendritic cells stimulated with Actinobacillus actinomycetemcomitans elicit rapid gamma interferon responses by natural killer cells.
Infection and Immunity, 72 (2004), pp. 5089-5096
[69.]
T. Kikuchi, D.L. Willis, M. Liu, et al.
Dendritic-NK cell interactions in P. gingivalis-specific responses.
Journal of Dental Research, 84 (2005), pp. 858-862
[70.]
J. Choi, M.A. Borrello, E. Smith, et al.
Prior exposure of mice to Fusobacterium nucleatum modulates host response to Porphyromonas gingivalis.
Oral Microbiology and Immunology, 16 (2001), pp. 338-344
[71.]
A. Iwasaki, R. Medzhitov.
Toll-like receptor control of the adaptive immune responses.
Nature Immunology, 5 (2004), pp. 987-995
[72.]
T. Woehrle, W. Du, A. Goetz, et al.
Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans.
Cytokine, 41 (2008), pp. 322-329
[73.]
M. Moser, K.M. Murphy.
Dendritic cell regulation of TH1-TH2 development.
Nature Immunology, 1 (2000), pp. 199-205
[74.]
T.J. van Steenbergen, P. Kastelein, J.J. Touw, et al.
Virulence of blackpigmented Bacteroides strains from periodontal pockets and other sites in experimentally induced skin lesions in mice.
Journal of Periodontal Research, 17 (1982), pp. 41-49
[75.]
P.B. Chen, M.E. Neiders, S.J. Millar, et al.
Effect of immunization on experimental Bacteroides gingivalis infection in a murine model.
Infection and Immunity, 55 (1987), pp. 2534-2537
[76.]
K. Nakano, M. Kuboniwa, I. Nakagawa, et al.
Comparison of in ammatory changes caused by Porphyromonas gingivalis with distinct fimA genotypes in a mouse abscess model.
Oral Microbiology and Immunology, 19 (2004), pp. 205-209
[77.]
H. Birkedal-Hansen, R.E. Taylor, J.J. Zambon, et al.
Characterization of collagenolytic activity from strains of Bacteroides gingivalis.
Journal of Periodontal Research, 23 (1988), pp. 258-264
[78.]
M.E. Neiders, P.B. Chen, H. Suido, et al.
Heterogeneity of virulence among strains of Bacteroides gingivalis.
Journal of Periodontal Research, 24 (1989), pp. 192-198
[79.]
R.T. Evans, B. Klausen, N.S. Ramamurthy, et al.
Periodontopathic potential of two strains of Porphyromonas gingivalis in gnotobiotic rats.
Archives of Oral Biology, 37 (1992), pp. 813-819
[80.]
A. Wilensky, D. Polak, S. Awawdi, et al.
Strain-dependent activation of the mouse immune response is correlated with Porphyromonas gingivalisinduced experimental periodontitis.
Journal of Clinical Periodontology, (2009),
[81.]
S. Offenbacher.
Periodontal diseases: pathogenesis.
Annals of Periodontology, 1 (1996), pp. 821-878
[82.]
M.A. Listgarten.
Pathogenesis of periodontitis.
Journal of Clinical Periodontology, 13 (1986), pp. 418-430
[83.]
J. Aduse-Opoku, J.M. Slaney, A. Hashim, et al.
Identification and characterization of the capsular polysaccharide (K-antigen) locus of Porphyromonas gingivalis.
Infection and Immunity, 74 (2006), pp. 449-460
[84.]
J. Brunner, W. Crielaard, A.J. van Winkelhoff.
Analysis of the capsular polysaccharide biosynthesis locus of Porphyromonas gingivalis and development of a K1-specific polymerase chain reaction-based serotyping assay.
Journal of Periodontal Research, 43 (2008), pp. 698-705
[85.]
K.E. Nelson, R.D. Fleischmann, R.T. DeBoy, et al.
Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83.
Journal of Bacteriology, 185 (2003), pp. 5591-5601
[86.]
T. Chen, Y. Hosogi, K. Nishikawa, et al.
Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis.
Journal of Bacteriology, 186 (2004), pp. 5473-5479
Copyright © 2010. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Opciones de artículo