covid
Buscar en
Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral
Toda la web
Inicio Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral Modelación por homología de la proteína Luxs de Porphyromonas gingivalis cepa...
Información de la revista
Vol. 5. Núm. 3.
Páginas 105-113 (diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 5. Núm. 3.
Páginas 105-113 (diciembre 2012)
Open Access
Modelación por homología de la proteína Luxs de Porphyromonas gingivalis cepa W83
Modelling by homology of Luxs protein in Porphyromonas gingivalis strain W83
Visitas
1968
A. Díaz Caballero1,
Autor para correspondencia
antoniodiazc@yahoo.com
adiazc1@unicartagena.edu.co

Correspondencia autor: Facultad de Odontología, Universidad de Cartagena. Campus de la Salud. Barrio Zaragocilla. Cartagena de Indias, Colombia.
, E. Martínez Serrano2, R. Vivas Reyes3, L. Puerta Llerena4, D. Méndez Cuadro5, R. Cabrales Salgado6, A. Padilla Rodríguez7
1 Odontólogo. Universidad de Cartagena. Especialista en Periodoncia, Universidad Javeriana. Magíster en Educación, Universidad del Norte. Candidato a Doctor en Ciencias Biomédicas, Universidad de Cartagena. Profesor Titular Universidad de Cartagena. Director Grupo de Investigaciones GITOUC. Colombia
2 Químico. Universidad de Cartagena. Magíster en Química, Universidad de Cartagena. Docente Universidad de Cartagena. Colombia
3 Químico. Universidad del Valle. Magíster en Química, Universidad del Valle. Doctor en Ciencias, Universidad Libre de Bruselas. Profesor Titular Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena. Director Grupo de Investigaciones Química Cuántica y Teórica. Colombia
4 Químico Farmacéutico. Universidad de Cartagena. Magíster en Ciencias, Universidad Nacional, Bogotá. Doctor en Ciencias Biológicas, Pontificia Universidad Javeriana. Profesor Titular, Instituto de Investigaciones Inmunológicas de la Universidad de Cartagena. Colombia
5 Químico Farmacéutico. Universidad de Cartagena. Magíster en Biología, Universidad Javeriana. PhD en Bioquímica y Biología Molecular, Universidad Complutense de Madrid. Profesor Asistente Universidad de Cartagena. Colombia
6 Odontólogo. Universidad de Cartagena. DDS, PhD en Endodoncia, Universidad de São Paulo, Brasil. Profesor Facultad de Odontología, Universidad de Cartagena. Colombia
7 Químico. Universidad de Cartagena. Candidato a Magíster en Química, Universidad de Cartagena. Consultora. Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Antecedentes

En las proteínas no se logra siempre su cristalización, de buen tamaño y de buena calidad para someterla a difracción de rayos X. De tal manera que se abre un campo para el desarrollo de estudios teóricos moleculares y proteínicos, que permiten la representación de las moléculas en tres dimensiones, proporcionando una información espacial para estudiar la interacción entre ligandos y receptores macromoleculares.

Materiales y Métodos

Estudio In silico, a partir del análisis de secuencias primarias de seis diferentes proteínas LuxS cristalizadas de diversas bacterias, se seleccionó la proteína 1J6X del Helicobacter pylori, por su similaridad con la secuencia de la proteína LuxS en Porphyromonas gingivalis (P. gingivalis) cepa W83, para producir un modelo por homología de esta proteína, utilizando los programas Sybyl y MOE. Se realizó un acoplamiento con el ligando natural para evaluar la reproducibilidad del modelo en un ambiente biológico.

Resultados

Se desarrolló el modelado de la proteína LuxS de P. gingivalis cepa W83, que permite el acercamiento a una estructura que se propone, por la interacción entre la proteína y su ligando natural. El modelo generado con recursos computacionales logró una correcta estructura molecular que aceptó la realización de diversos cálculos. El acoplamiento demostró una cavidad donde se logran diversas posiciones del ligando con buenos resultados.

Conclusiones

Se obtuvo un modelo 3D para la proteína LuxS en la P. gingivalis cepa W83 validado por diferentes métodos computacionales con una adecuada reproducibilidad biológica por medio del acoplamiento molecular.

Palabras clave:
Homología estructural de proteína
Porphyromonas gingivalis
conformación molecular
bacterias gram negativas
periodoncia (Decs Bireme)
Abstract
Background

Crystallization is not always achieved for all proteins in a good size and a good quality for X-ray diffraction. So that condition opens a field for the development of theoretical molecular and protein studies allowing the representation of the molecules in 3D, providing spatial information to study the interaction between ligands and macromolecular receptors.

Materials and Methods

In silico study from primary sequence analysis of six different proteins LuxS crystallized of several bacteria. 1J6X protein of Helicobacter pylori was selected for its similarity with the LuxS protein sequence in Porphyromonas gingivalis (P. gingivalis) strain W83 to produce a homology model of this protein, using the Sybyl and MOE software. A docking was performed to assess the reproducibility of the model in a biological environment.

Results

The LuxS protein modelling of P. gingivalis strain W83 was developed, which allows the approach to a proposed structure for the interaction between the protein and its natural ligand. The model generated with computational resources achieved the correct position and biological behavior by means of developed calculations. The docking showed a cavity in which the ligand adopted several positions with good results.

Conclusions

A LuxS protein model was obtained, validated by different methods. This generated a 3D model for LuxS protein in P. gingivalis strain W83 with biological reproducibility by means of molecular docking.

Key words:
Protein structural homology
Porphyromonas gingivalis
molecular conformation
gram-negative bacteria
periodontic (Mesh Database)
El Texto completo está disponible en PDF
Referencias bibliográficas
[1.]
E. Baltacioglu, M. Aslan, O. Sarac, A. Saybak, P. Yuva.
Analysis of clinical results of systemic antimicrobials combined with nonsurgical periodontal treatment for generalized aggressive periodontitis: A pilot study.
J Can Dent Assoc, 77 (2011), pp. b97
[2.]
C. Serrano, N. Torres, A. Bejarano, M. Cavie, M.E. Castellanos.
Clinical and microbiological comparison of three non-surgical protocols for the initial treatment of chronic periodontitis.
J Int Acad Periodontol, 13 (2011), pp. 17-26
[3.]
Y. Asahi, Y. Noiri, J. Igarashi, H. Asai, H. Suga, S. Ebisu.
Effects of N-acyl homoserine lactone analogues on Porphyromonas gingivalis biofilm formation.
J Periodontal Res, 45 (2010), pp. 255-261
[4.]
A. Díaz Caballero, R. Vivas Reyes, M. Ahumedo Monterrosa, L. Arévalo Tovar, R. Cabrales Salgado, A. Herrera Herrera.
Biopelículas como expresión del mecanismo de quorum sensing: Una revisión.
Av Periodon Implantol, 23 (2011), pp. 195-201
[5.]
R.T. Demmer, P.N. Papapanou, D.R. Jacobs Jr., M. Desvarieux.
Evaluating clinical periodontal measures as surrogates for bacterial exposure: The Oral Infections and Vascular Disease Epidemiology Study (INVEST).
BMC Med Res Methodol, 10 (2010), pp. 2
[6.]
J. Choi, S.Y. Lee, K. Kim, B.K. Choi.
Identification of immunoreactive epitopes of the Porphyromonas gingivalis heat shock protein in periodontitis and atherosclerosis.
J Periodontal Res, 46 (2011), pp. 240-245
[7.]
G. Babnigg, A. Joachimiak.
Predicting protein crystallization propensity from protein sequence.
J Struct Funct Genomics, 11 (2010), pp. 71-80
[8.]
N. Hamilton, T. Huber.
An introduction to protein contact prediction.
Methods Mol Biol, 453 (2008), pp. 87-104
[9.]
H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, et al.
Femtosecond X-ray protein nanocrystallography.
Nature, 470 (2011), pp. 73-77
[10.]
M. Yamamoto, K. Hirata, T. Hikima, Y. Kawano, G. Ueno.
Protein micro-crystallography with a new micro-beam beamline.
Yakugaku Zasshi, 130 (2010), pp. 641-648
[11.]
H.B. Wen, J. Moradian-Oldak, J.P. Zhong, D.C. Greenspan, A.G. Fincham.
Effects of amelogenin on the transforming surface microstructures of bioglass in a calcifying solution.
J Biomed Mater Res, 52 (2000), pp. 762-773
[12.]
Z.T. Wen, A.H. Nguyen, J.P. Bitoun, J. Abranches, H.V. Baker, R.A. Burne.
Transcriptome analysis of LuxS-deficient Streptococcus mutans grown in biofilms.
Mol Oral Microbiol, 26 (2011), pp. 2-18
[13.]
G. Reguera.
When microbial conversations get physical.
Trends Microbiol, 19 (2011), pp. 105-113
[14.]
J.S. Dickschat.
Quorum sensing and bacterial biofilms.
Nat Prod Rep, 27 (2010), pp. 343-369
[15.]
N.S. Jakubovics, P.E. Kolenbrander.
The road to ruin: The formation of diseaseassociated oral biofilms.
[16.]
Y. Saito, R. Fujii, K.I. Nakagawa, H.K. Kuramitsu, K. Okuda, K. Ishihara.
Stimulation of Fusobacterium nucleatum biofilm formation by Porphyromonas gingivalis.
Oral Microbiol Immunol, 23 (2008), pp. 1-6
[17.]
P.V. Capriles, A.C. Guimaraes, T.D. Otto, A.B. Miranda, L.E. Dardenne, W.M. Degrave.
Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: Putative drug targets for chagas’ disease treatment.
BMC Genomics, 11 (2010), pp. 610
[18.]
J.X. Zhang, H.W. Ma, M. Sang, Y.S. Hu, Z.N. Liang, H.X. Ai, et al.
Molecular structure, expression, cell and tissue distribution, immune evolution and cell proliferation of the gene encoding bovine (Bos taurus) TNFSF13 (APRIL).
Dev Comp Immunol, 34 (2010), pp. 1199-1208
[19.]
J.G. Mullins, J.E. Parker, H.J. Cools, R.C. Togawa, J.A. Lucas, B.A. Fraaije, et al.
Molecular modelling of the emergence of azole resistance in Mycosphaerella graminicola.
[20.]
A. Maulik, H. Ghosh, S. Basu.
Comparative study of protein-protein interaction observed in PolyGalacturonase-inhibiting proteins from Phaseolus vulgaris and glycine max and PolyGalacturonase from Fusarium moniliforme.
BMC Genomics, 10 (2009), pp. S19
[21.]
R.C. Green, A.E. Thumser, D. Povey, J.W. Saldanha, B.S. Potter, R.A. Palmer, et al.
A comparative study of the single crystal X-ray determination and molecular modelling of the binding of oligomycin to ATP synthase.
Comput Biol Chem, 33 (2009), pp. 189-195
[22.]
C.Y. Tsao, L. Wang, Y. Hashimoto, H. Yi, J.C. March, M.P. DeLisa, et al.
LuxS coexpression enhances yields of recombinant proteins in Escherichia coli in part through posttranscriptional control of GroEL.
Appl Environ Microbiol, 77 (2011), pp. 2141-2152
[23.]
H.A. Ruwandeepika, T. Defoirdt, P.P. Bhowmick, I. Karunasagar, P. Bossier.
Expression of virulence genes in luminescent and nonluminescent isogenic vibrios and virulence towards gnotobiotic brine shrimp (Artemia franciscana).
J Appl Microbiol, 110 (2011), pp. 399-406
[24.]
M. Schuster.
Global expression analysis of quorum-sensing controlled genes.
Methods Mol Biol, 692 (2011), pp. 173-187
[25.]
A.G. Palmer, E. Streng, K.A. Jewell, H.E. Blackwell.
Quorum sensing in bacterial species that use degenerate autoinducers can be tuned by using structurally identical non-native ligands.
Chembiochem, 12 (2011), pp. 138-147
[26.]
R. Rajan, J. Zhu, X. Hu, D. Pei, C.E. Bell.
Crystal structure of S-ribosylhomocysteinase (LuxS) in complex with a catalytic 2-ketone intermediate.
Biochemistry, 44 (2005), pp. 3745-3753
[27.]
Y. Gao, J. Song, B. Hu, L. Zhang, Q. Liu, F. Liu.
The LuxS gene is involved in AI-2 production, pathogenicity, and some phenotypes in Erwinia amylovora.
Curr Microbiol, 58 (2009), pp. 1-10
[28.]
B.A. Rader, C. Wreden, K.G. Hicks, E.G. Sweeney, K.M. Ottemann, K. Guillemin.
Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB.
Microbiology, 157 (2011), pp. 2445-2455
[29.]
M. Kadirvel, W.T. Stimpson, S. Moumene-Afifi, B. Arsic, N. Glynn, N. Halliday, et al.
Synthesis and bioluminescence-inducing properties of autoinducer (S)-4,5-dihydroxypentane-2,3- dione and its enantiomer.
Bioorg Med Chem Lett, 20 (2010), pp. 2625-2628
[30.]
K.R. Hardie, K. Heurlier.
Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development.
Nat Rev Microbiol, 6 (2008), pp. 635-643
[31.]
M. Michelin, S. Teixeira, E. Ando-Suguimoto, S. Lucas, M. Mayer.
Porphyromonas gingivalis infection at different gestation periods on fetus development and cytokines profile.
[32.]
M. Enersen.
Porphyromonas gingivalis: A clonal pathogen?: Diversities in housekeeping genes and the major fimbriae gene.
J Oral Microbiol, 3 (2011), pp. 683-690
[33.]
G. Hajishengallis, S. Liang, M.A. Payne, A. Hashim, R. Jotwani, M.A. Eskan, et al.
Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement.
Cell Host Microbe, 10 (2011), pp. 497-506
[34.]
N.A. Burgess, D.F. Kirke, P. Williams, K. Winzer, K.R. Hardie, N.L. Meyers, et al.
LuxSdependent quorum sensing in Porphyromonas gingivalis modulates protease and Haemagglutinin activities but is not essential for virulence.
Microbiology, 148 (2002), pp. 763-772
[35.]
J. Aduse-Opoku, N.N. Davies, A. Gallagher, A. Hashim, H.E. Evans, M. Rangarajan, et al.
Generation of lys-gingipain protease activity in Porphyromonas gingivalis W50 is independent of Arg-gingipain protease activities.
Microbiology, 146 (2000), pp. 1933-1940
[36.]
R. McNab, S.K. Ford, A. El-Sabaeny, B. Barbieri, G.S. Cook, R.J. Lamont.
LuxS-based signaling in Streptococcus gordonii: Autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis.
J Bacteriol, 185 (2003), pp. 274-284
[37.]
N. Eswar, B. Webb, M.A. Marti-Renom, M.S. Madhusudhan, D. Eramian, M.Y. Shen, et al.
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics, (2006),
[38.]
A. Fiser, R.K. Do, A. Sali.
Modeling of loops in protein structures.
Protein Sci, 9 (2000), pp. 1753-1773
[39.]
S.F. Altschul.
Amino acid substitution matrices from an information theoretic perspective.
J Mol Biol, 219 (1991), pp. 555-565
[40.]
D.W. Mount, P.A.M. Using.
matrices in sequence alignments.
CSH Protoc, (2008),
[41.]
D.W. Mount.
Using BLOSUM in sequence alignments.
CSH Protoc, (2008),
[42.]
D.W. Mount.
Comparison of the PAM and BLOSUM amino acid substitution matrices.
CSH Protoc, (2008),
[43.]
D.W. Mount.
Using gaps and gap penalties to optimize pairwise sequence alignments.
CSH Protoc, (2008),
[44.]
S.N. Ruzheinikov, S.K. Das, S.E. Sedelnikova, A. Hartley, S.J. Foster, M.J. Horsburgh, et al.
The 1.2 a structure of a novel quorum-sensing protein, Bacillus subtilis LuxS.
J Mol Biol, 313 (2001), pp. 111-122
[45.]
A.N. Jain, Surflex:.
Fully automatic flexible molecular docking using a molecular similarity-based search engine.
J Med Chem, 46 (2003), pp. 499-511
[46.]
C.R. Sweet, S.S. Hampton, R.D. Skeel, J.A. Izaguirre.
A separable shadow Hamiltonian hybrid Monte Carlo method.
J Chem Phys, 131 (2009), pp. 174106
[47.]
H.A. Lewis, E.B. Furlong, B. Laubert, G.A. Eroshkina, Y. Batiyenko, J.M. Adams, et al.
A structural genomics approach to the study of quorum sensing: Crystal structures of three LuxS orthologs.
Structure, 9 (2001), pp. 527-537
[48.]
R.W. Janes.
Bioinformatics analyses of circular dichroism protein reference databases.
Bioinformatics, 21 (2005), pp. 4230-4238
[49.]
M. Paramasivan, G. Sankaran, N. Sethuraman, D.S. Devadoss, S. Thangavelu, M. Gangatharan.
Molecular modelling of urease accessory interaction proteins of Helicobacter pylori J 99 and predicting an interruption in interaction by Vigna radiata Defensins.
Bioinformation, 5 (2011), pp. 410-415
[50.]
D. Eisenberg, R. Luthy, J.U. Bowie.
VERIFY3D: Assessment of protein models with three-dimensional profiles.
Methods Enzymol, 277 (1997), pp. 396-404
[51.]
B. Paital, S. Kumar, R. Farmer, N.K. Tripathy, G.B. Chainy.
In silico prediction and characterization of 3D structure and binding properties of catalase from the commercially important crab.
Scylla serrata. Interdiscip Sci, 3 (2011), pp. 110-120
[52.]
M.J. Sippl.
Recognition of errors in three-dimensional structures of proteins.
Proteins, 17 (1993), pp. 355-362
[53.]
H.S. Cho, N. Dashdorj, F. Schotte, T. Graber, R. Henning, P. Anfinrud.
Protein structural dynamics in solution unveiled via 100-ps time-resolved x-ray scattering.
Proc Natl Acad Sci USA, 107 (2010), pp. 7281-7286
[54.]
D. Vlachakis.
Theoretical study of the Usutu virus helicase 3D structure, by means of computer-aided homology modelling.
Theor Biol Med Model, 6 (2009), pp. 9
[55.]
A.N. Jain.
Morphological similarity: A 3D molecular similarity method correlated with protein-ligand recognition.
J Comput Aided Mol Des, 14 (2000), pp. 199-213
[56.]
M.D. Eldridge, C.W. Murray, T.R. Auton, G.V. Paolini, R.P. Mee.
Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes.
J Comput Aided Mol Des, 11 (1997), pp. 425-445
[57.]
G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor.
Development and validation of a genetic algorithm for flexible docking.
J Mol Biol, 267 (1997), pp. 727-748
[58.]
I. Muegge, Y.C. Martin.
A general and fast scoring function for protein-ligand interactions: A simplified potential approach.
J Med Chem, 42 (1999), pp. 791-804
[59.]
I.D. Kuntz, J.M. Blaney, S.J. Oatley, R. Langridge, T.E. Ferrin.
A geometric approach to macromolecule-ligand interactions.
J Mol Biol, 161 (1982), pp. 269-288
[60.]
M. Miele, S. Costantini, G. Colonna.
Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin.
[61.]
G. Pollastri, A.J. Martin, C. Mooney, A. Vullo.
Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information.
BMC Bioinformatics, 8 (2007), pp. 201
[62.]
H. Venselaar, R.P. Joosten, B. Vroling, C.A. Baakman, M.L. Hekkelman, E. Krieger, et al.
Homology modelling and spectroscopy, a never-ending love story.
Eur Biophys J, 39 (2010), pp. 551-563
[63.]
F. Alber, F. Forster, D. Korkin, M. Topf, A. Sali.
Integrating diverse data for structure determination of macromolecular assemblies.
Annu Rev Biochem, 77 (2008), pp. 443-477
[64.]
W.V. Giannobile.
Host-response therapeutics for periodontal diseases.
J Periodontol, 79 (2008), pp. 1592-1600
[65.]
F.R. Maia, T. Ekeberg, N. Timneanu, D. van der Spoel, J. Hajdu.
Structural variability and the incoherent addition of scattered intensities in single-particle diffraction.
Phys Rev E Stat Nonlin Soft Matter Phys, 80 (2009), pp. 031905
[66.]
B. Tesson, M.J. Genet, V. Fernández, S. Degand, P.G. Rouxhet, V. Martin-Jezequel.
Surface chemical composition of diatoms.
Chembiochem, 10 (2009), pp. 2011-2024
Copyright © 2012. Sociedad de Periodoncia de Chile, Sociedad de Implantología Oral de Chile y Sociedad de Prótesis y Rehabilitación Oral de Chile
Descargar PDF
Opciones de artículo