Información de la revista
Vol. 37. Núm. 2.
Páginas 147-151 (mayo - julio 2009)
Vol. 37. Núm. 2.
Páginas 147-151 (mayo - julio 2009)
Open Access
Advances in the molecular basis of anaesthesiology
Visitas
3133
C.N. Madiedo, D.J. Perea
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
REFERENCIAS
[1.]
A. Walker, G. Mashour.
A brief history of anesthesia and sleep.
International anesthesiology clinics., 46 (2008), pp. 1-10
[2.]
G.A. Mashour, S.A. Forman, J.A. Campagna.
Mechanism of anesthesia general, from molecules to mind.
Best Practice & Research Clinical Anaesthesiology, 19 (2006), pp. 349-364
[3.]
R. Uwe, A. Bernd.
Molecular and neuronal substrates for general anesthetics.
Nature reviews of neuroscience, volume 4 (2004), pp. 709-716
[4.]
A. Bruce, D. Bray.
Alberts Molecular Biology of the cell.
Fourth edition, Mc Graw Hill, (2007),
[5.]
K.W. Miller.
The natural of sites action of anesthetics.
British journal of anaesthesia, 89 (2002), pp. 17-21
[6.]
H.A. Nasch.
In vivo genetics of anesthetic actions.
British journal of anaesthesia, 89 (2002), pp. 143-155
[7.]
L.J. Velly, M.F. Rey, N.J. Bruder, F.A. Gouvitsos.
The search for structure and mechanisms controlling anesthesia induced unconsciousness.
Anesthesiology, 107 (2007), pp. 105-110
[8.]
J.R. Atack.
Anxioselective Compounds Acting at the GABAA Receptor Benzodiazepine Binding Site.
Current Drug Targets - CNS & Neurological Disorders, 24 (2003), pp. 213-232
[9.]
E. Moody, P. Skolnick.
Book of Molecular Basis of anesthesia.
CRC Editors, University, (2001),
[10.]
J.F. Antognini, E. Carstens.
In vivo characterization of clinical anesthesia and components.
British journal of anaesthesia., 89 (2002), pp. 156-166
[11.]
K. Solt, S.A. Forman.
Correlating the clinical actions and molecular mechanisms of general anesthetics.
Current Opinion in Anesthesiology., 20 (2007), pp. 300-306
[12.]
J.R. Trudell, E. Bertaccili.
molecular modeling of specific and non specific anesthetic interaction.
British journal of anaesthesia., 89 (2002), pp. 32-40
[13.]
B.W. Urban.
Current assessments of targets and theories of anesthesia.
British journal of anaesthesia., 167 (2002), pp. 83-89
[14.]
B.W. Urban, M. Bleckwen.
Concepts and correlations relevant to general anesthesia.
British journal of anaesthesia., 89 (2002), pp. 8-16
[15.]
Y. Zhang, Michael, M.J. Laster, C.R. Stabernack, J.M. Sonner.
Blockade of 5-HT2A Receptors May Mediate or Modulate Part of the Immobility Produced by Inhaled Anesthetics.
Anesthesia Analgesia, 97 (2003), pp. 475-479
[16.]
J.L. Steiger, Sh. Russek.
Available Pharmacology and therapeutics GABAa receptors: building the bridge between subunit mRNAm promoters, and cognate transcription factors.
Anesthesia Analgesia, 101 (2004), pp. 261-262
[17.]
C. Grasshoft, R. Uwe, A. Bernd.
Molecular and mechanisms of general anesthesia the multi site and multiple mechanisms concept.
Current opinion in anaesthesiology., 18 (2005), pp. 386-391
[18.]
A.J. Smith, P.B. Simpson.
Methodological approaches for the study of GABAa receptor pharmacology and functional responses Analytical & Bioanalytical Chemistry..
Springer Berlin / Heildelberg, 77 (2003), pp. 843-851
[19.]
N.G. Bowery, T.G. Smart.
GABA and glycine as neurotransmitters: a brief history.
British Journal of Pharmacology, 47 (2006), pp. S109-S119
[20.]
M.J. Rebechii, S.N. Pentyala.
Anaesthetic actions on other targets: protein kinase C and guanine nucleotide binding proteins.
British journal of anesthesia., 89 (2002), pp. 62-78
[21.]
Y. Zhang, J.M. Sonner, E.I. Eger.
Gamma-Aminobutyric Acid A Receptors Do Not Mediate the Immobility Produced by Isoflurane.
Anesthesia Analgesia., 99 (2004), pp. 85-90
[22.]
P.J. Whiting.
GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery?.
Drug discovery today., 8 (2003), pp. 445-450
[23.]
J.P. Dilger.
The effects of general anaesthetics on ligated ion channels.
British Journal of Anaesthesia., 89 (2002), pp. 41-51
[24.]
P. Flood, K. Matheu.
Intravenous anesthetic differentially modulates ligand ion chanels.
Anesthesiology, (2000), pp. 1418-1425
[25.]
Y. Zhang, M.J. Laster, K. Hara, R.A. Harris, E.I. Eger.
Glycine receptors mediate part of the immobility produced by inhaled anesthetics.
Anesthesia and Analgesia., 96 (2003), pp. 97-101
[26.]
P. Flood, K. Matthew.
Intravenous Anesthetics Differentially Modulate Ligand-gated Ion Channels.
Anesthesiology., 92 (2000), pp. 1418-1422
[27.]
C. Grasshoff, B. Drexler1, R. Uwe, A. Bernd.
Anaesthetic Drugs: Linking Molecular Actions to Clinical Effects.
Current Pharmaceutical Design., 12 (2006), pp. 3665-3679
[28.]
R. Miramontes.
Relación de canales de potasio acoplados a proteinas G y fármacos estado actual y perspectivas, Tesis maestria en Ciencias fisiológicas, Universidad de Colina Mexico.
[29.]
C. Heurteaux1, N. Guy1, C. Laigle, N. Blondeau.
TREK-1, a KÞ channel involved in neuroprotection and general anesthesia.
EMBO Journal, 23 (2004), pp. 2684-2695
[30.]
W. Heinke.
In vivo image of anesthetic action in humans: approaches with positron emission tomography (PET) and functional magnetic resonance imaging.
British journal of anaesthesia., 89 (2002), pp. 112-122
[31.]
E. Tassonyi, E. Charpantier.
The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia.
Brain Research Bulletin., 57 (2002), pp. 133-150
[32.]
B. Anthowiak.
In vitro networks: cortical mechanisms of anesthetic action.
British journal of anaesthesia., 89 (2002), pp. 156-166
[33.]
J.J. Kending.
In vitro networks: subcortical mechanisms of anesthetic action.
British journal of anaesthesia., 89 (2002), pp. 91-104
[34.]
C.D. Richards.
Anaesthetic modulation of synaptic transmission in the mammalian CNS.
British journal of anaesthesia., 89 (2002), pp. 79-90
[35.]
A. Zeller, M. Arras, R. Juran, R. Uwe.
Identification of a molecular target mediating the general anesthetic actions of pentobarbital.
Mol Pharmacol., 71 (2007), pp. 852-859
[36.]
Esquema receptor GABA.
Modificado de de.
[37.]
Original de Nature Reviews Neuroscience, 6 (July 2005), pp. 565-575
Copyright © 2009. Revista Colombiana de Anestesiología
Opciones de artículo