covid
Buscar en
Revista Colombiana de Anestesiología
Toda la web
Inicio Revista Colombiana de Anestesiología Hipocapnia en neuroanestesia: estado actual
Información de la revista
Vol. 40. Núm. 2.
Páginas 137-144 (abril - junio 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 40. Núm. 2.
Páginas 137-144 (abril - junio 2012)
Open Access
Hipocapnia en neuroanestesia: estado actual
Hypocapnia in Neuroanesthesia: Current Situation
Visitas
11296
María E. Solano C.a,
Autor para correspondencia
maryaches@hotmail.com

Autor para correspondencia: Transversal 39a # 39c-10 sur, Int 2, Apto 204, Alameda de Villamayor, Etapa 2, Bogotá, Colombia.
, Ichel Castillo B.b, María C. Niño De Mejíac
a Residente III año, Anestesiología, Universidad del Rosario, Bogotá, Colombia
b Residente III año, Anestesiología, Universidad de la Sabana, Bogotá, Colombia
c Neuroanestesióloga-Intensivista, Fundación Santa Fe de Bogotá, Bogotá, Colombia
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Introducción

La hiperventilación ha sido una maniobra común en el manejo anestésico de procedimientos neuroquirúrgicos. Hace unos años había escepticismo entre los médicos sobre si esto resultaba en isquemia cerebral. Hoy sabemos que es perjudicial y deteriora el estado y el pronóstico del paciente.

Objetivo

Hacer una revisión de los efectos adversos de la hipocapnia en diferentes órganos, principalmente el cerebro, e identificar las recomendaciones actuales de su utilidad.

Métodos

Realizamos una búsqueda de la literatura en la base de datos de PubMed utilizando términos MeSH incluidos en las palabras clave; se amplió con la revisión de algunos textos y la bibliografía de los artículos más relevantes.

Resultados

Con la revisión de la literatura, se ha demostrado que la hipocapnia es perjudicial tanto para el cerebro como para otros tejidos, y la recomendación actual es utilizarla sólo en dos situaciones (en caso de herniación inminente y para mejorar el campo quirúrgico) y por 20 min.

Conclusiones

La hiperventilación no debe ser una intervención anestésica rutinaria en el manejo del paciente neuroquirúrgico; debe tener una indicación precisa y, una vez la indicación haya cesado, la intervención debe ser retirada lo más pronto posible.

Palabras clave:
Hipocapnia
Anestesia
Hiperventilación
Dióxido de carbono
Abstract
Introduction

Hyperventilation has been a usual maneuver in the management of anesthesia in neurosurgical procedures. A few years back there used to be some medical skepticism about the potential of cerebral ischemia and today we know that it is detrimental and worsens the patient's condition and prognosis.

Objective

To review the adverse effects of hypocapnia on various organs —mainly the brain— and to identify the current recommendations about its use.

Methodology

We conducted a PubMed literature search using MeSH terminology including the key words. The search was expanded to include a review of several texts and the bibliography of the most relevant articles.

Results

The literature review showed that hypocapnia is harmful for the brain and for other tissues and the current recommendation is to use it for two situations only: in case of imminent herniation and to improve the surgical field, limited to 20 minutes.

Conclusions

Hyperventilation should not be a routine anesthetic intervention for the management of the neurosurgical patient; there must be a precise indication and once the situation is corrected, the intervention must be immediately withdrawn.

Keywords:
Hypocapnia
Anesthesia
Hyperventilation
Carbon dioxide
El Texto completo está disponible en PDF
Referencias
[1.]
G. Curley, J. Laffey, B. Kavanagh.
Bench-to-beside review: Carbon dioxide.
Crit Care, 14 (2010), pp. 220
[2.]
J. Laffey, B. Kavanagh.
Hypocapnia.
[3.]
Miller R. Miller's Anesthesia. 7.ª ed. 2009.
[4.]
D. Marion, A. Puccio, S. Wisniewski.
Effect of hyperventilation on extracellular concentrations of glutamate, lactate, and local cerebral blood flow in patients with severe traumatic brain injury.
Crit Care Med, 30 (2002), pp. 2619-2625
[5.]
Patiño F, Celis E. Fisiología de la respiración e insuficiencia respiratoria aguda. 7.ª ed. 2005.
[6.]
Marino P. The UCI book. 3.ª ed. Capítulo 2. 2007.
[7.]
J. Ghajar, R. Hariri, R. Narayan.
Survey of critical care management of comatose, head-injured patients in the United States.
Crit Care Med, 23 (1995), pp. 560-567
[8.]
J.P. Muizelaar, A. Marmarou, J.D. Ward.
Adverse effects of prolonged hyperventilation in patients with severe head injury.
J Neurosurg, 75 (1991), pp. 731-739
[9.]
N. Stocchetti, A. Maas, A. Chieregato.
Hyperventilation in head injury.
Chest, 127 (2005), pp. 1812-1827
[10.]
G. Curley, B. Kavanagh, J. Laffey.
Hypocapnia and the injured brain: More harm than benefit.
[11.]
E. Caulfield, R. Dutton, D. Floccare.
Prehospital hypocapnia and poor outcome after severe traumatic brain injury.
J Trauma, 66 (2009), pp. 1577-1583
[12.]
J.A. Carmona Suazo, A.I.R. Maas.
Van den Brink. CO2 reactivity and brain oxygen pressure monitoring in severe head injury.
Crit Care Med, 28 (2000), pp. 3268-3274
[13.]
P. Skippen, M. Seear, K. Poskitt.
Effect of hyperventilation on regional cerebral blood flow in head-injured children.
Crit Care Med, 25 (1997), pp. 1402-1409
[14.]
D.W. Marion, T.P. Spiegel.
Changes in the management of severe traumatic brain injury: 1991–1997.
Crit Care Med, 28 (2000), pp. 16-18
[15.]
J.O. Neumann, I.R. Chambers, G. Citerio.
The use of hyperventilation therapy after traumatic brain injury in Europe.
Intensive Care Med, 34 (2008), pp. 1676-1682
[16.]
R. Curry, W. Hollingworth, G. Richard.
Incidence of hypo- and hypercarbia in severe traumatic brain injury before and after 2003 pediatric guidelines.
Pediatr Crit Care Med, 9 (2008), pp. 141-146
[17.]
Brain Trauma Foundation.
Use of hyperventilation in the acute management of severe pediatric traumatic brain injury.
Pediatr Crit Care Med, 4 (2003), pp. 45-47
[18.]
J.E. Huizenga, B. Zink, R. Maio.
The penetrance of head injury management guidelines into the practice patterns of Michigan emergency physicians.
Acad Emerg Med, 7 (2000), pp. 1171
[19.]
H. Ito, I. Kanno, H. Iida.
Arterial fraction of cerebral blood volume in humans measured by positron emission tomography.
Ann Nucl Med, 15 (2001), pp. 111-116
[20.]
H. Ito, I. Ibaraki Kanno, H. Fukuda, S. Miura.
Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hipocapnia measured by positron emission tomography.
J Cereb Blood Flow Metab, 25 (2005), pp. 852-857
[21.]
H.A. Kontos, A.J. Raper, J.L. Patterson.
Analysis of vasoactivity of local Ph. PCO2 and bicarbonate on pial vessels.
Stroke, 8 (1977), pp. 358-360
[22.]
A. Ozan.
Optimizing the intraoperative management of carbon dioxide concentration.
Curr Opin Anaesthesiol, 19 (2006), pp. 19-25
[23.]
K.B. Domino, M.J. Emery, E.R. Swenson, et al.
Ventilation heterogeneity is increased in hypocapnic dogs.
Respir Physiol, 111 (1998), pp. 89-100
[24.]
J.F. Nunn.
Applied respiratory physiology.
3.ª ed., Butterworths, (1987),
[25.]
J. Huttunen, H. Tolvanen, E. Heinonen, et al.
Effects of voluntary hyperventilation on cortical sensoryresponses. Electroencephalographic and magnetoencephalographic studies.
Exp Brain Res, 125 (1999), pp. 248-254
[26.]
D. Davis.
Early ventilation in traumatic brain injury.
Resuscitation, 76 (2008), pp. 333-340
[27.]
S.K. Samra, P. Turk, J.F. Arens.
Effect of hipocapnia on local cerebral glucose utilization in rats.
Anesthesiology, 70 (1989), pp. 523-526
[28.]
J.P. Coles, T.D. Fryer, M.R. Coleman, et al.
Hyperventilation following head injury: Effect on ischemic burden and cerebral oxidative metabolism.
Crit Care Med, 35 (2007), pp. 568-578
[29.]
E.M. Graham, M. Apostolou, O.P. Mishra, M. Delivoria-Papadopoulos.
Modification of the N-methyl-D-aspartate receptor in the brain of newborn piglets following hyperventilation induced ischemia.
Neurosci Lett, 218 (1996), pp. 29-32
[30.]
R.S. Ikonen, M.O. Janas, M.J. Koivikko, P. Laippala, E.J. Kuusinen.
Hyperbilirubinemia, hypocarbia and periventricular leukomalacia in preterm infants.
Acta Paediatr, 81 (1992), pp. 802-807
[31.]
T.E. Wiswell, L.J. Graziani, M.S. Kornhauser, C. Stanley, D.A. Merton, L. McKee, et al.
Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high frequency jet ventilation.
Pediatrics, 98 (1996), pp. 918-924
[32.]
B.H. Yoon, R. Romero, C.J. Kim, J.N. Koo, G. Choe, H.C. Syn, et al.
High expression of tumour necrosis factor a and interleukin6 in periventricular leukomalacia.
Am J Obstet Gynecol, 177 (1997), pp. 406-411
[33.]
C.A. Gleason, B.L. Short, D. Jones.
Cerebral blood flow and metabolism during and after prolonged hypocapnia in newborn lambs.
J Pediatr, 115 (1989), pp. 309-314
[34.]
R.K. Narayan, P.R.S. Kishore, D.P. Becker, J.D. Ward, G.G. Enas, R.P. Greenberg, et al.
Intracranial pressure: to monitor or not to monitor.
J Neurosurg, 56 (1982), pp. 650-659
[35.]
D.W. Marion, J. Darby, H. Yonas.
Acute regional cerebral blood flow changes caused by severe head injuries.
J Neurosurg, 74 (1991), pp. 407-414
[36.]
G.J. Bouma, J.P. Muizelaar, W.A. Stringer, S.C. Choi, P. Fatouros, H.F. Young.
Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography.
J Neurosurg, 77 (1992), pp. 360-368
[37.]
W.D. Heiss, G. Rosner.
Functional recovery of cortical neurons as related to degree and duration of ischemia.
Ann Neurol, 14 (1983), pp. 294-301
[38.]
H. Van Santbrink, J.W. Schouten, E.W. Steyerberg, et al.
Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period.
Acta Neurochir, 144 (2002), pp. 1141-1149
[39.]
D.I. Graham, A.E. Lawrence, G. Scott, et al.
Brain damage in fatal non-missile head injury without high intracranial pressure.
J Clin Pathol, 41 (1988), pp. 34-37
[40.]
G.J. Bouma, J.P. Muizelaar, S.C. Choi, P.G. Newlon, H.F. Young.
Cerebral circulation and metabolism after severe traumatic brain injury.
J Neurosurg, 75 (1991), pp. 685-693
[41.]
S.P. Gopinath, C.S. Robertson, C.F. Contant, C. Hayes, Z. Feldman, R.K. Narayan, et al.
Jugular venous desaturation and outcome after head injury.
J Neurol Neurosurg Psychiatry, 57 (1994), pp. 717-723
[42.]
M.E. Raichle, J.B. Posner, F. Plum.
Cerebral blood flow during and after hyperventilation.
Arch Neurol, 23 (1970), pp. 394-403
[43.]
Guidelines for the Management of Severe Traumatic Brain Injury 2007. A Joint project of the Brain Trauma Foundation. Journal of Neurotrauma.
[44.]
P.J. Sioutos, J.A. Orozco, L.P. Carter, M.E. Weinand, A.J. Hamilton, F.C. Williams.
Continuous regional cerebral cortical blood flow monitoring in head-injured patients.
Neurosurgery, 36 (1995), pp. 943-949
[45.]
D.W. Newell, J.P. Weber, R. Watson, R. Aaslid, H.R. Winn.
Effect of transient moderate hyperventilation on dynamic cerebral autoregulation after severe head injury.
Neurosurgery, 39 (1996), pp. 35-44
[46.]
J. Hovorka.
Carbon dioxide homeostasis and recovery after general anaesthesia.
Acta Anaesthesiol Scand, 26 (1982), pp. 498-504
[47.]
J.G. Laffey, D. Engelberts, M. Duggan, R. Veldhuizen, J.F. Lewis, B. Kavanagh.
Carbon dioxide attenuates pulmonary impairment resulting from hyperventilation.
Crit Care Med, 31 (2003), pp. 2634-2640
[48.]
K. Hisano, T. Matsuguchi, H. Ootsubo, O. Nakagaki, H. Tomoike, et al.
Hyperventilation-induced variant angina with ventricular tachycardia.
Am Heart J, 108 (1984), pp. 423-425
[49.]
P.T. Cook.
The influence on foetal outcome of maternal carbon dioxide tension at caesarean section under general anaesthesia.
Anaesth Intens Care, 12 (1984), pp. 296-302
[50.]
A.W. Gelb, R.A. Craen, G.S. Rao, K.R.M. Reddy, J. Megyesi, B. Mohanty, et al.
Does hyperventilation improve operating condition during supratentorial craniotomy?.
Anesth Analg, 106 (2008), pp. 585-594
Copyright © 2012. Sociedad Colombiana de Anestesiología y Reanimación
Descargar PDF
Opciones de artículo