covid
Buscar en
Revista Colombiana de Cancerología
Toda la web
Inicio Revista Colombiana de Cancerología Distribución de variantes del virus del papiloma humano 16 (VPH 16) en mujeres ...
Información de la revista
Vol. 16. Núm. 4.
Páginas 205-216 (diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 4.
Páginas 205-216 (diciembre 2012)
Acceso a texto completo
Distribución de variantes del virus del papiloma humano 16 (VPH 16) en mujeres con y sin neoplasia intraepitelial cervical grado 3 y cáncer cervical
Distribution of Variants of the Human Papilloma Virus 16 (HPV 16) in Women with and without Grade 3 Cervical Intraepithelial Neoplasia and Cervical Cancer
Visitas
9535
Esteban Lopera1, Patricia Acosta2, Yaliana Tafurt2, Mary Uribe1, Carlos Córdoba3, Piedad Acosta2,4, Katherine Quintero1, Yexania Arboleda2, Hernán Sierra2, Gloria Sánchez1, Astrid Bedoya1,5,
Autor para correspondencia
astridbedoya@hotmail.com

Correspondencia: Astrid M. Bedoya, Grupo Infección y Cáncer, Carrera 51D No. 62-29, Laboratorio 283, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia. Tel.:éfono (57 4) 219 6062.
1 Grupo Infección y Cáncer, Universidad de Antioquia, Medellín, Colombia
2 Grupo de Investigación en Genética Humana Aplicada, Universidad del Cauca, Popayán, Colombia
3 Departamento de Ginecología y Obstetricia, Hospital Universitario San Vicente de Paúl, Medellín, Colombia
4 Departamento de Ginecología y Obstetricia, Facultad Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia
5 Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen
Objetivos

Describir la distribución de variantes del virus del papiloma humano 16 en mujeres con y sin neoplasia intraepitelial cervical grado 3 y cáncer cervical.

Métodos

Se determinaron las variantes moleculares en casos de carcinoma escamocelular, adenocarcinoma cervical y en mujeres sin anormalidades citológicas de alto grado y positivas para el virus del papiloma humano 16. Para la detección de las variantes moleculares se amplificó el marco abierto de lectura del gen E6 del virus del papiloma humano 16 y se utilizó una técnica de hibridación reversa para la detección de los principales cambios de nucleótidos que identifican las ramas filogenéticas y las clases de variantes.

Resultados

Hubo diferencias estadísticamente significativas en la distribución de variantes de virus del papiloma humano 16. Los controles no presentaron infecciones con variantes no europeas, mientras que ellas estuvieron presentes en el 30% de los casos de carcinoma escamocelular o neoplasia intraepitelial cervical grado tres. En adenocarcinoma, el 65% de las infecciones fueron del tipo no europeo.

Conclusiones

La prevalencia de variantes no europeas de virus de papiloma humano 16 fue de 31,2% en neoplasia intraepitelial cervical grado 3 y cáncer escamocelular, y de 64,1% en adenocarcinoma de cérvix, mientras que estas no se observaron en mujeres sin cáncer.

Palabras clave:
Neoplasias del cuello uterino
Papilomavirus Humano 16
sondas de ADN de HPV
adenocarcinoma
Abstract
Objectives

To describe the distribution of the variants of the human papilloma virus 16 in women with and without grade 3 cervical intraepithelial neoplasia and cervical cancer.

Methods

Molecular variants were established in cases of squamous cell carcinoma, cervical adenocarcinoma and in women with high grade Pap smear abnormalities who tested positive for human papilloma virus 16. For the detection of molecular variants the open reading framework for the E6 gene of the human papilloma virus 16 was amplified and a reverse hybridization technique was utilized for the detection of major changes in the nucleotides which identify the phylogenetic branches and classes of variants.

Results

There were statistically significant results in the distribution of the variants of the human papilloma virus 16. Control cases showed no infections with non European variants, but they were present in 30% of squamous cell carcinoma or grade three cervical intraepithelial neoplasia. For adenocarcinoma, 65% of infections were of non European type.

Conclusions

The prevalence of non European variants of the human papilloma virus 16 was 31.2% in grade 3 cervical intraepithelial neoplasia and squamous cell cancer, and 64.1% in cervical adenocarcinoma; however, these were not observed among women without cancer.

Keywords:
Uterine cervical neoplasms
human papillomavirus 16
DNA probes
HPV
adenocarcinoma
El Texto completo está disponible en PDF
Referencias
[1.]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008, cancer incidence and mortality worldwide: IARC CancerBase No. Lyon, France: International Agency for Research on Cancer; 2010.
[2.]
B.H. Yang, F.I. Bray, D.M. Parkin, J.W. Sellors, Z.F. Zhang.
Cervical cancer as a priority for prevention in different world regions: an evaluation using years of life lost.
Int J Cancer, 109 (2004), pp. 418-424
[3.]
F.X. Bosch, A. Lorincz, N. Munoz, C.J. Meijer, K.V. Shah.
The causal relation between human papillomavirus and cervical cancer.
J Clin Pathol, 55 (2002), pp. 244-265
[4.]
G.M. Clifford, J.S. Smith, M. Plummer, N. Muñoz, S. Franceschi.
Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis.
Br J Cancer, 88 (2003), pp. 63-73
[5.]
N. Muñoz, F.X. Bosch, S. de Sanjosé, R. Herrero, X. Castellsague, K.V. Shah, et al.
Epidemiologic classification of human papillomavirus types associated with cervical cancer.
N Engl J Med, 348 (2003), pp. 518-527
[6.]
M.J. Khan, P.E. Castle, A.T. Lorincz, S. Wacholder, M. Sherman, D.R. Scott, et al.
The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of typespecific HPV testing in clinical practice.
J Natl Cancer Inst, 97 (2005), pp. 1072-1079
[7.]
M. Schiffman, R. Herrero, R. Desalle, A. Hildesheim, S. Wacholder, A.C. Rodriguez, et al.
The carcinogenicity of human papillomavirus types reflects viral evolution.
Virology, 337 (2005), pp. 76-84
[8.]
G. Myers.
Human Papillomaviruses, 1996. A compilation and analysis of nucleic acid and amino acid sequences.
Los Álamos: National Laboratory, (1996),
[9.]
E.M. de Villiers, C. Fauquet, T.R. Broker, H.U. Bernard, H. zur Hausen.
Classification of papillomaviruses.
Virology, 324 (2004), pp. 17-27
[10.]
H.U. Bernard.
The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses.
J Clin Virol, 32 (2005), pp. S1-S6
[11.]
A. Huertas-Salgado, D.C. Martín-Gámez, P. Moreno, R. Murillo, M.M. Bravo, L. Villa, et al.
E6 molecular variants of human papillomavirus (HPV) type 16: an updated and unified criterion for clustering and nomenclature.
Virology, 410 (2011), pp. 201-215
[12.]
T. Yamada, C.M. Wheeler, A.L. Halpern, A.C. Stewart, A. Hildesheim, S.A. Jenison.
Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6 L2, and L1 coding segments.
J Virol, 69 (1995), pp. 7743-7753
[13.]
L. Villa, L. Sichero, P. Rahal, O. Caballero, A. Ferenczy, T. Rohan, et al.
Molecular Variants of Human Papillomavirus Types 16 and 18 Preferentially Associated with Cervical Neoplasia.
J Gen Virol, 81 (2000), pp. 2959-2968
[14.]
J. Berumen, R.M. Ordonez, E. Lazcano, J. Salmeron, S.C. Galvan, R.A. Estrada, et al.
Asian-American variants of human papillomavirus 16 and risk for cervical cancer: a case-control study.
J Natl Cancer Inst, 93 (2001), pp. 1325-1330
[15.]
L.F. Xi, J.J. Carter, D.A. Galloway, J. Kuypers, J.P. Hughes, S.K. Lee, et al.
Acquisition and natural history of human papillomavirus type 16 variant infection among a cohort of female university students.
Cancer Epidemiol Biomarkers Prev, 11 (2002), pp. 343-351
[16.]
R.D. Burk, M. Terai, P.E. Gravitt, L.A. Brinton, R.J. Kurman, W.A. Barnes, et al.
Distribution of human papillomavirus types 16 and 18 variants in squamous cell carcinomas and adenocarcinomas of the cervix.
Cancer Res, 63 (2003), pp. 7215-7220
[17.]
M.A. de Boer, L.A. Peters, M.F. Aziz, B. Siregar, S. Cornain, M.A. Vrede, et al.
Human papillomavirus type 16 E6, E7, and L1 variants in cervical cancer in Indonesia, Suriname, and The Netherlands.
Gynecol Oncol, 94 (2004), pp. 488-494
[18.]
M.L. Tornesello, M.L. Duraturo, I. Salatiello, L. Buonaguro, S. Losito, G. Botti, et al.
Analysis of human papillomavirus type-16 variants in Italian women with cervical intraepithelial neoplasia and cervical cancer.
J Med Virol, 74 (2004), pp. 117-126
[19.]
I. Zehbe, E. Wilander, H. Delius, M. Tommasino.
Risk of cervical cancer and geographical variations of human papillomavirus 16 E6 polymorphisms.
Lancet, 352 (1998), pp. 1441-1442
[20.]
P. Londesborough, L. Ho, G. Terry, J. Cuzick, C. Wheeler, A. Singer.
Human papillomavirus genotype as a predictor of persistence and development of high-grade lesions in women with minor cervical abnormalities.
[21.]
W. Rojas, M.V. Parra, O. Campo, M.A. Caro, J.G. Lopera, W. Arias, et al.
Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers.
Am J Phys Anthropol, 143 (2010), pp. 13-20
[22.]
M.C. Gornick, X. Castellsague, G. Sanchez, T.J. Giordano, M. Vinco, J.K. Greenson, et al.
Human papillomavirus is not associated with colorectal cancer in a large international study.
Cancer Causes Control, 21 (2010), pp. 737-743
[23.]
A.J. van den Brule, R. Pol, N. Fransen-Daalmeijer, L.M. Schouls, C.J. Meijer, P.J. Snijders.
GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes.
J Clin Microbiol, 40 (2002), pp. 779-787
[24.]
M. Molano, A. Van den Brule, M. Plummer, E. Weiderpass, H. Posso, A. Arslan, et al.
Determinants of clearance of human papillomavirus infections in Colombian women with normal cytology: a population-based, 5-year followup study.
Am J Epidemiol, 158 (2003), pp. 486-494
[25.]
N.F. Schlecht, R.D. Burk, J.M. Palefsky, H. Minkoff, X. Xue, L.S. Massad, et al.
Variants of human papillomaviruses 16 and 18 and their natural history in human immunodeficiency virus-positive women.
J Gen Virol, 86 (2005), pp. 2709-2720
[26.]
Molano M, Huertas-Salgado A. A Method for Detection and Identification of HPV 16 Variants Using Primers and Probes. World Intellectual Property Organization (WIPO) 2010. PCT No: WO/2010/125420. Disponible en “http://www.wipo.int/pctdb”.
[27.]
G.I. Sánchez, B. Kleter, T. Gheit, L.J. van Doorn, M.N. de Koning, S. de Sanjosé, et al.
Clinical evaluation of polymerase chain reaction reverse hybridization assay for detection and identification of human papillomavirus type 16 variants.
J Clin Virol, 51 (2011), pp. 165-169
[28.]
R Project for Statistical Computing. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [internet]. 2010. [citado: 25 de abril de 2012]. Disponible en: http://www.R-project.org
[29.]
M.M. Bravo.
Variantes moleculares en el gen L1 del virus del papiloma humano tipo 16, y regiones de la proteína L1 probablemente involucradas en la interacción viruscélula epitelial.
IATREA, 17 (2004), pp. 314
[30.]
K. Junes-Gill, L. Sichero, P.C. Maciag, W. Mello, V. Noronha, L.L. Villa.
Human papillomavirus type 16 variants in cervical cancer from an admixtured population in Brazil.
J Med Virol, 80 (2008), pp. 1639-1645
[31.]
N. Muñoz, F.X. Bosch, S. de Sanjosé, L. Tafur, I. Izarzugaza, M. Gili, et al.
The causal link between human papillomavirus and invasive cervical cancer: a population-based case-control study in Colombia and Spain.
Int J Cancer, 52 (1992), pp. 743-749
[32.]
F.X. Bosch, N. Muñooz, S. de Sanjosé, C. Navarro, P. Moreo, N. Ascunce, et al.
Human papillomavirus and cervical intraepithelial neoplasia grade III/carcinoma in situ: a case-control study in Spain and Colombia.
Cancer Epidemiol Biomarkers Prev, 2 (1993), pp. 415-422
[33.]
L.L. Villa, R.L. Costa, C.A. Petta, R.P. Andrade, J. Paavonen, O.E. Iversen, et al.
High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of followup.
Br J Cancer, 95 (2006), pp. 1459-1466
[34.]
D.M. Harper, E.L. Franco, C.M. Wheeler, A.B. Moscicki, B. Romanowski, C.M. Roteli-Martins, et al.
Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial.
Lancet, 367 (2006), pp. 1247-1255
[35.]
L. Denny, L. Kuhn, C.C. Hu, W.Y. Tsai, T.C. Wright Jr..
Human papillomavirus-based cervical cancer prevention: long-term results of a randomized screening trial.
J Natl Cancer Inst, 102 (2010), pp. 1557-1567
[36.]
A. Huertas-Salgado.
Presencia y persistencia de variantes de VPH 16 en mujeres con citología normal y en mujeres que desarrollaron lesiones intraepiteliales cervicales de alto grado, de la cohorte de Bogotá.
Universidad Nacional de Colombia, (2008),
[37.]
M. Molano, H. Posso, E. Weiderpass, A.J. van den Brule, M. Ronderos, S. Franceschi, et al.
Prevalence and determinants of HPV infection among Colombian women with normal cytology.
Br J Cancer, 87 (2002), pp. 324-333
[38.]
R. López-Revilla, M.A. Pineda, J. Ortiz-Valdez, M. Sánchez- Garza, L. Riego.
Human papillomavirus type 16 variants in cervical intraepithelial neoplasia and invasive carcinoma in San Luis Potosí City.
Mexico. Infect Agent Cancer, 4 (2009), pp. 3
[39.]
M. González-Losa, Laviada Mier, M. Tera, M. Puerto-Solis, A. García-Carranca.
Molecular variants of HPV type 16 E6 among Mexican women with LSIL and invasive cancer.
J Clin Virol, 29 (2004), pp. 95-98
[40.]
T. Yamada, M.M. Manos, J. Peto, C.E. Greer, N. Muñoz, F.X. Bosch, et al.
Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective.
J Virol, 71 (1997), pp. 2463-2472
[41.]
G. Bedoya, P. Montoya, J. Garcia, I. Soto, S. Bourgeois, L. Carvajal, et al.
Admixture dynamics in Hispanics: A. shift in the nuclear genetic ancestry of a South American population isolate.
Proc Natl Acad Sci U.S.A, 103 (2006), pp. 7234-7239
[42.]
J. Ben-Ezra, D.A. Johnson, J. Rossi, N. Cook, A. Wu.
Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction.
J Histochem Cytochem, 39 (1991), pp. 351-354
[43.]
P. García, F. Benavente, A. Melo, I. Roa, J.C. Roa.
Efecto de la fijación en la calidad del ADN: estudio controlado con cinco fijadores.
Rev Españ Patol, 39 (2006), pp. 5
[44.]
M. Steinau, S.S. Patel, E.R. Unger.
Efficient DNA extraction for HPV genotyping in formalin-fixed, paraffinembedded tissues.
J Mol Diagn, 13 (2011), pp. 377-381
[45.]
K.D. Quint, M.N. de Koning, L.J. van Doorn, W.G. Quint, E.C. Pirog.
HPV genotyping and HPV16 variant analysis in glandular and squamous neoplastic lesions of the uterine cervix.
Gynecol Oncol, 117 (2010), pp. 297-301
[46.]
M.L. Tornesello, S. Losito, G. Benincasa, F. Fulciniti, G. Botti, S. Greggi, et al.
Human papillomavirus (HPV) genotypes and HPV16 variants and risk of adenocarcinoma and squamous cell carcinoma of the cervix.
Gynecol Oncol, 121 (2011), pp. 32-42
[47.]
A. Storey, M. Thomas, A. Kalita, C. Harwood, D. Gardiol, F. Mantovani, et al.
Role of a p53 polymorphism in the development of human papillomavirus-associated Cancer.
Nature, 393 (1998), pp. 229-234
[48.]
H. Lichtig, M. Algrisi, L.E. Botzer, T. Abadi, Verbitzky, A. Jackman, et al.
HPV16 E6 natural variants exhibit different activities in functional assays relevant to the carcinogenic potential of E6.
Virology, 350 (2006), pp. 216-227
[49.]
I. Zehbe, J. Mytilineos, I. Wikstrom, R. Henriksen, L. Edler, M. Tommasino.
Association between human papillomavirus 16 E6 variants and human leukocyte antigen class I polymorphism in cervical cancer of Swedish women.
Hum Immunol, 64 (2003), pp. 538-542
[50.]
Z. Chen, M. Terai, L. Fu, R. Herrero, R. DeSalle, R.D. Burk, et al.
Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses.
Copyright © 2012. Instituto Nacional de Cancerología
Descargar PDF
Opciones de artículo