covid
Buscar en
Revista Colombiana de Cancerología
Toda la web
Inicio Revista Colombiana de Cancerología Mutaciones Ha-RAS en fibroblastos del estroma cervical de neoplasias escamosas d...
Información de la revista
Vol. 14. Núm. 2.
Páginas 102-109 (enero 2009)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 14. Núm. 2.
Páginas 102-109 (enero 2009)
Acceso a texto completo
Mutaciones Ha-RAS en fibroblastos del estroma cervical de neoplasias escamosas de cuello uterino
Ha-RAS mutations in cervical stromal fibroblasts of squamous neoplasia of the cervix
Visitas
2944
Pablo Moreno-Acosta1,
Autor para correspondencia
dajup63@yahoo.com
pmoreno@cancer.gov.co

Correspondencia: Pablo Moreno Acosta. Grupo Investigación en Biología del Cáncer, Subdirección de Investigaciones, Instituto Nacional de Cancerología. Av. 1a No. 9-85, Bogotá, Colombia. Teléfono: 334 1122, ext. 4203.
, Schyrly Carrillo1, Martha Serrano2, Diana Núñez1, Alfredo Romero-Rojas3
1 Grupo Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá. Colombia
2 Grupo Área de Investigaciones, Instituto Nacional de Cancerología, Bogotá. Colombia
3 Grupo de Patología, Instituto Nacional de Cancerología, Bogotá. Colombia
Este artículo ha recibido
Información del artículo
Resumen
Objetivo

Detectar mutaciones del oncogén Ha-RAS en fibroblastos del estroma de biopsias de la zona de transformación del cuello uterino.

Métodos

Se seleccionaron ocho muestras de tejido fresco congelado de pacientes diagnosticadas con neoplasia intraepitelial de cuello uterino, de tipo escamoso (NIC I, NIC II, NIC III), cáncer in situ y carcinoma escamocelular infiltrante, tejido en el cual sólo se encontraba representado el estroma, sin evidencia de componente epitelial tumoral residual, y para cada uno de los cuales se contaba con el tejido cervical de control incluido en parafina, que confirmaba la presencia de proceso neoplasico escamoso cervical. La detección de mutaciones Ha-RAS codón 12 fue realizada mediante un PCR-SSCP no radiactivo y análisis enzimático de restricción.

Resultados

La mutación hallada para un cambio de una glicina por una valina en el codón 12 del oncogén Ha-RAS fue detectada en una sola muestra (12,5%), NIC III.

Conclusiones

La presencia de una alteración molecular, mutación puntual del oncogén Ha-RAS en el estroma de uno de estos casos analizados, representa un cambio importante, y sugiere una vía alterna que podría involucrar inestabilidad genética estromal en la generación de neoplasias intraepiteliales y progresión del cáncer de cuello uterino.

Palabras clave:
Ha-RAS
mutación
fibroblastos
estroma
neoplasia
cuello del útero.
Abstract
Objective

To detect Ha-Ras oncogene mutations in stromal fibroblasts in biopsies in the cervical transformation zone.

Methods

Eight samples were selected of fresh frozen tissue taken from patients diagnosed with intraepithelial neoplasia of the cervix, squamous type (NIC I, NIC II, NIC III), cancer in situ, and invasive squamous cell carcinoma, tissue in which only stroma was represented, with no evidence of residual tumor epithelial component; from each, the control cervical paraffin fixed tissue was counted which confirmed the presence of squamous cervical neoplastic process. The detection of codon 12 Ha-RAS mutations was carried out with non radioactive PCR-SSCP and restriction enzyme analysis.

Results

The revealed mutation that altered a glycine into a valine in the codon 12 of the Ha-RAS oncogene was detected in only one sample (12.5%), NIC III.

Conclusions

The presence of molecular alteration, punctual mutation of the Ha-RAS oncogene in the stroma of one of the cases analyzed represents an important change and suggests an alternate route that could involve stromal genetic stability in the generation of intraepithelial neoplasia and in the progression of cervical cancer.

Key words:
Ha-RAS
mutation
fibroblasts
stroma
neoplasia
cervix uteri
El Texto completo está disponible en PDF
Referencias
[1.]
A. Krtolica, J. Campisi.
Cancer and aging: a model for the cancer promoting effects of the aging stroma.
Int J Biochem Cell Biol, 34 (2002), pp. 1401-1414
[2.]
M.H. Barcellos-Hoff, D. Medina.
New highlights on stromaepithelial interactions in breast cancer.
Breast Cancer Res, 7 (2005), pp. 33-36
[3.]
P. Schedin, A. Elias.
Multistep tumorigenesis and the microenvironment.
Breast Cancer Res, 6 (2004), pp. 93-101
[4.]
T.D. Tlsty, L.M. Coussens.
Tumor stroma and regulation of cancer development.
Annu Rev Pathol, 1 (2006), pp. 119-150
[5.]
R. Mulherkar.
The enigma of carcinogenesis - stroma or epithelial cells?.
J Biosci, 29 (2004), pp. 133-134
[6.]
H.Y. Chang, J.B. Sneddon, A.A. Alizadeh, R. Sood, R.B. West, K. Montgomery, et al.
Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.
PLoS Biol, 2 (2004), pp. 206-214
[7.]
N. Matsumoto, T. Yoshida, K. Yamashita, Y. Numata, I. Okayasu.
Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma.
Br J Cancer, 89 (2003), pp. 707-712
[8.]
D. Gius, M.C. Funk, E.Y. Chuang, S. Feng, P.C. Huettner, L. Nguyen, et al.
Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates.
Cancer Res, 67 (2007), pp. 7113-7123
[9.]
X. Hu, T. Pang, A. Asplund, J. Pontén, M. Nistér.
Clonality analysis of synchronous lesions of cervical carcinoma based on X chromosome inactivation polymorphism, human papillomavirus type 16 genome mutations, and loss of heterozygosity.
J Exp Med, 195 (2002), pp. 845-854
[10.]
M. Barbacid.
Ras genes.
Annu Rev Biochem, 56 (1987), pp. 779-827
[11.]
C.J. Tabin, S.M. Bradley, C.I. Bargmann, R.A. Weinberg, A.G. Papageorge, E.M. Scolnick, et al.
Mechanism of activation of a human oncogene.
Nature, 300 (1982), pp. 143-149
[12.]
K.L. Berger, F. Barriga, M.J. Lace, L.P. Turek, G.J. Zamba, F.E. Domann, et al.
Cervical keratinocytes containing stably replicating extrachromosomal HPV-16 are refractory to transformation by oncogenic H-Ras.
Virology, 356 (2006), pp. 68-78
[13.]
J.L. Bos.
Ras oncogenes in human cancer: a review.
Cancer Res, 49 (1989), pp. 4682-4689
[14.]
M. Malumbres, M. Barbacid.
RAS oncogenes: the first 30 years.
Nat Rev Cancer, 3 (2003), pp. 459-465
[15.]
N. Karimianpour, P. Mousavi-Shafaei, A.A. Ziaee, M.T. Akbari, G. Pourmand, A. Abedi, et al.
Mutations of RAS gene family in specimens of bladder cancer.
Urol J, 5 (2008), pp. 237-242
[16.]
G. Riou, M. Barois, Z. Sheng, M. Duvillard, C. Lhomme.
Somatic deletions and mutations of c-Ha-ras gene in human cervical cancers.
Oncogene, 3 (1988), pp. 329-333
[17.]
M.E. Landro, D. Dalbert, M.A. Picconi, N. Cúneo, J. González, S. Vornetti, et al.
Human papillomavirus and mutated H-ras oncogene in cervical carcinomas and pathological negative pelvic lymph nodes: a retrospective follow-up.
J Med Virol, 80 (2008), pp. 694-701
[18.]
J.K. Field, D.A. Spandidos.
The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis (review).
Anticancer Res, 10 (1990), pp. 1-22
[19.]
A. Schneider, L.A. Koutsky.
Natural history and epidemiological features of genital HPV infection.
IARC Sci Publ, (1992), pp. 25-52
[20.]
J.H. Lee, S.K. Lee, M.H. Yang, M.M. Ahmed, M. Mohiuddin, E.Y. Lee.
Expression and mutation of H-ras in Uterine Cervical Cancer.
Gynecol. Oncol, 62 (1996), pp. 49-54
[21.]
L. Van Le, J. Stoerker, C.A. Rinehart, W.C. Fowler.
H-ras codon 12 mutation in cervical dysplasia.
Gynecol Oncol, 49 (1993), pp. 181-184
[22.]
Y.F. Wong, T.K. Chung, T.H. Cheung, S.K. Lam, Y.G. Xu, A.M. Chang.
Frequent ras gene mutations in squamous cell cervical cancer.
Cancer Lett, 95 (1995), pp. 29-32
[23.]
L.V. Alonio, D. Dalbert, M.A. Picconi, G. Cervantes Vazquez, A. García Carrancá, A.L. Distefano, et al.
Ha-ras and p53 gene mutations scanned by PCR-SSCP in premalignant and malignant lesions of the uterine cervix associated with human papillomavirus.
Medicina (B Aires), 60 (2000), pp. 895-901
[24.]
L.T. Soh, D. Heng, I.W. Lee, T.H. Ho, K.M. Hui.
The relevance of oncogenes as prognostic markers in cervical cancer.
Int J Gynecol Cancer, 12 (2002), pp. 465-474
[25.]
K. Hayashi.
PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic.
PCR Methods Appl. DNA, 1 (1991), pp. 34-38
[26.]
M. Orita, H. Iwahana, H. Kanazawa, K. Hayashi, T. Sekiya.
Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.
Proc Natl Acad Sci USA, 86 (1989), pp. 2766-2770
[27.]
M. Orita, Y. Suzuki, T. Sekiya, K. Hayashi.
Rapid and sensitive detection of point mutations and DNA polymor phisms using the polymerase chain reaction.
Genomics, 5 (1989), pp. 874-879
[28.]
P. Moreno-Acosta, M. Molano, A. Huertas, M.S. de Gómez, A. Romero, M. González, et al.
A non-radioactive PCR-SSCP analysis allows to distinguish between HPV 16 European and Asian-American variants in squamous cell carcinomas of the uterine cervix in Colombia.
Virus Genes, 37 (2008), pp. 22-30
[29.]
P.H. Arias, A.P. Moreno, J.C. Corredor, M. Molano, D. Orozco, A.J.C. Van den Brule.
Detección del virus del papiloma humano por métodos no radiactivos.
Neoplasia, 14 (1997), pp. 45-50
[30.]
R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, et al.
Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.
Science, 230 (1985), pp. 1350-1354
[31.]
D.J. Capon, E.Y. Chen, A.D. Levinson, P.H. Seeburg, D.V. Goeddel.
Complete nucleotide sequences of the T24 human Bladder carcinoma oncogene and its normal homologue.
Nature, 302 (1983), pp. 33-37
[32.]
M.V. Maffini, A.M. Soto, J.M. Calabro, A.A. Ucci, C. Sonnenschein.
The stroma as a crucial target in rat mammary gland carcinogenesis.
J Cell Sci, 117 (2004), pp. 1495-1502
[33.]
A. Rangel-López, P. Piña-Sánchez, M. Salcedo.
Genetic variations of the tumor suppressor TP53: outstanding and strategies of analysis.
Rev Invest Clin, 58 (2006), pp. 254-264
Copyright © 2010. Instituto Nacional de Cancerología
Descargar PDF
Opciones de artículo