metricas
covid
Buscar en
Revista Colombiana de Reumatología
Toda la web
Inicio Revista Colombiana de Reumatología Linfocitos T reguladores: Subpoblaciones, mecanismo de acción e importancia en ...
Información de la revista
Vol. 18. Núm. 3.
Páginas 203-220 (septiembre 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 18. Núm. 3.
Páginas 203-220 (septiembre 2011)
Acceso a texto completo
Linfocitos T reguladores: Subpoblaciones, mecanismo de acción e importancia en el control de la autoinmunidad
T regulatory lymphocytes: subpopulations, mechanism of action and importance in the control of autoimmunity
Visitas
38131
Heber Siachoque1, Natalia Satisteban2, Antonio Iglesias-Gamarra3
1 MSc, Coordinador de la unidad de Inmunología, Facultad de Medicina, Universidad del Rosario
2 MD, Estudiante de toxicología, Facultad de Medicina, Universidad del Rosario
3 MD. Profesor titular, Facultad de Medicina, Universidad Nacional de Colombia
Este artículo ha recibido
Información del artículo
Resumen

La regulación inmunológica constituye tanto un mecanismo importante para el mantenimiento de la homeostasis del sistema inmune como para el establecimiento de la tolerancia hacia antígenos propios evitando el desarrollo de enfermedades autoinmunitarias. Así mismo, juega un papel relevante en el mantenimiento de la tolerancia periférica mediante el control de una pequeña población de células T circulantes denominadas células T reguladoras (Treg), las cuáles parecen haber migrado del timo durante estadios relativamente tardíos1.

El término “células T reguladoras” se refiere a células que activan o suprimen la función de otras células. Aparentemente, controlan el desarrollo de enfermedades autoinmunitarias (lupus, tiroiditis, diabetes tipo I y enfermedad inflamatoria intestinal entre otras) el rechazo de injertos, y pueden jugar un papel crítico en el control del asma y la alergia.

Palabras clave:
fenotipo
singénicos
FoxP3
TGF-β
anergia
autóloga
escurfina
Treg
APC
células presentadoras de antígeno
receptor de células T (TCR)
Complejo Mayor de Histocompatibilidad (CMH)
Summary

Immune regulation is both an important mechanism for maintaining immune system homeostasis and for the establishment of tolerance towards self antigens in order to prevent the development of autoimmune diseases. It also plays an important role in maintaining peripheral tolerance by controlling a small population of circulating T cells, called regulatory T cells (Treg), which seems to have migrated from the thymus during relatively late stages1.

The term “regulatory T cells” refers to cells that activate or suppress the function of other cells. Apparently, controlling the development of autoimmune diseases (For instance, lupus, thyroiditis, type I diabetes and inflammatory bowel disease among others), graft rejection and may play a critical role in asthma and allergy.

Key words:
phenotype
syngeneic
FoxP3
TGF-β
anergy
autologous
escurfina
Treg
antigen presenting cells (APC)
T cell receptor (TCR)
Mayor Histocompatibility Complex (MHC)
El Texto completo está disponible en PDF
Bibliografía
[1.]
C.M. Juang, C.F. Hung, J.Y. Yeh, H.C. Horng, N.F. Twu, M.H. Cheng, K.C. Wen, C.C. Yuan, K.C. Chao, T.C. Wu, M.S. Yen.
Regulatory T cells: potential target in anticancer immunotherapy.
Taiwan J Obstet Gynecol, 46 (2007), pp. 215-221
[2.]
Akbari Omid, Stock Philippe, DeKruyff Rosemarie, Umetsu Dale.
Role of regulatory T cells in allergy and asthma.
Current Opinion in Immunology, 15 (2003), pp. 627-633
[3.]
R.K. Gershon, K. Kondo.
Cell interactions in the induction of tolerance: the role of thymic lymphocytes.
Immunology, 18 (1970), pp. 723
[4.]
S. Sakaguchi, K. Wing, M. Miyara.
Regulatory T cells a brief history and perspective.
Eur. J. Immunol, 37 (2007), pp. S116-S123
[5.]
A. Hisashi, et al.
The Study of regulatory T cells and NKT cells in Japan: A historical perspective.
International Immunology., 21 (2009), pp. 1101-1103
[6.]
D.R. Green, P.M. Flood, R.K. Gershon.
Immunoregulatory T-cell pathways.
Annu. Rev. Immunol, 1 (1983), pp. 439-463
[7.]
Velásquez Sonia, García Luis, Álvarez Cristian.
Las células T reguladoras y su influencia en la sobrevida del trasplante renal.
Medicina, 67 (2007), pp. 491-501
[8.]
Jaramillo Francisco, Gómez Luis Miguel, Anaya Juan Manuel.
Células T reguladoras, infección y autoinmunidad: implicaciones en terapéutica.
Asociación colombiana de infectología, 10 (2006), pp. 178-180
[9.]
J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, S. Sakaguchi.
Stimulation of CD25(R)CD4(R) regulatory T cells through GITR breaks immunological selftolerance.
Nat Immunol, 3 (2002), pp. 135-142
[10.]
R.S. McHugh.
CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid induced TNF receptor.
Immunity, 16 (2002), pp. 311-323
[11.]
Z. Fehervari, S. Sakaguchi.
Development and function of CD25+CD4+ regulatory T cells.
Curr Opin Immunol, 16 (2004), pp. 203-208
[12.]
S. Sakaguchi.
Natural arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune response. annu.
Rev. Immunol, 22 (2004), pp. 531-562
[13.]
V. Aristimuño, T. Carolina.
Caracterización de linfocitos Treg y células dendríticas en pacientes con esclerósis Múltiple Recurrente remitente.
Universidad Complutense, (2007),
[14.]
Kumar Path, Abul K. Abbas, Nelson Fausto and Jon Aster. “Ch-Tissue Renewal, Regeneration and Repair”, Saunders (Elsevier) (ed.). 2009. Robbins & Cotran Pathologic Basis of Disease, 8th edición.
[15.]
N. Daniele, M.C. Scerpab, F. Landia, M. Canigliac, M. Jan Mieleb, F. Locatelli, G. Isacchi, F. Zinnoa.
Treg cells: Collection, processing, storage and clinical use Pathology.
Research and Practice, 207 (2011), pp. 209-215
[16.]
D. Sacks, C. Anderson.
Re-examination of the immunosuppessive mechanisms mediating-cure of Leishmania infection in mice.
Immunol Rev, 201 (2009), pp. 225-238
[17.]
C. Anderson, M. Oukka, V. Kuchroo.
CD4+CD25- FOXP3- TH1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis.
J Exp Med, 204 (2007), pp. 285-297
[18.]
D. Jankovic, et al.
Conventional T-bet+FOXP3- TH1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection.
JEM, 204 (2007), pp. 273-283
[19.]
Cabezas Lopategui, Cervantes Llano, Pentón Rol.
Respuesta inmune en la neuromielitis óptica.
Anales de medicina interna, 25 (2008), pp. 362-365
[20.]
Burchell T. Jennifer, Strickland H. Deborah, Stumbles Philip.
The role of dendritic cells and regulatory T cells in the regulation of allergic asthma.
pharmacology and therapeutics, 125 (2010), pp. 1-10
[21.]
E.M. Shevach, et al.
Control of T cell activation by CD4+CD25+ suppressor T cells.
Novartis Found. Symp, 252 (2003), pp. 24-36
[22.]
K.J. Maloy, F. Powrie.
Regulatory T cells in the control of immune pathology.
Nat Immunol, 2 (2001), pp. 816-822
[23.]
C.L. Pearson, H.O. McDevitt.
Redirecting Th1 and Th2 responses in autoimmune diseases.
Curr Top Microbiol Immunol, 238 (1999), pp. 79-122
[24.]
N. Suciu-Foca, J.S. Manavalan, R. Cortesini.
Generation and function of antigen-specific suppressor and regulatory T cells.
Transpl Immunol, 11 (2003), pp. 235-244
[25.]
A. Hayday, R. Tigelaar.
Immunoregulation in the tissues by gammadelta T cells.
Nat Rev Immunol, 3 (2003), pp. 233-242
[26.]
J.M. Berthelot, Y. Maugars.
Role for suppressor T cells in the pathogenesis of autoimmune diseases (including rheumatoid arthritis).
Facts and hypotheses Joint Bone Spine, 71 (2004), pp. 374-380
[27.]
H. Koenen, E. Fasse, I. Joosten.
IL-15 and cognate antigen successfully expand de novo-induced human antigen-specific regulatory CD4+ T cells that require antigen-specific activation for suppression.
J Immunol, 171 (2003), pp. 6431-6441
[28.]
S. Hori, T. Nomura, S. Sakaguchi.
Control of regulatory T cell development by the transcription factor Foxp3.
Science, 299 (2003), pp. 1057-1061
[29.]
S. Sakaguchi, T. Yamaguchi, T. Nomura, M. Ono.
Regulatory T cells and immune tolerance.
[30.]
C. Piccirillo, A. Thornton.
Cornerstone of peripheral tolerance: naturally occurring CD4+CD25+ regulatory T cells.
Trends Immunol, 25 (2004), pp. 374-380
[31.]
Gagliani Nicola, Ferraro Alessandra, Grazia Roncarolo, Battaglia manuela.
Autoimmune diabetic patients undergoing allogeneic islet transplantation: are ready for a regulatory T-cell therapy?.
Elsevier, (2009),
[32.]
Croci Diego, Bianco Germán, Toscano Marta, Salatino Mariana, Stupirski Juan Carlos.
Galectina-1 como una posible diana terapéutica en enfermedades autoinmunes y el cáncer.
Natureinmunology., (2007),
[33.]
W.J. Grossman, J.W. Verbsky, W. Barchet, M. Colonna, J.P. Atkinson, T.J. Ley.
Human T regulatory cells can use the perforin pathway to cause autologous target cell death.
Immunity, 21 (2004), pp. 589-601
[34.]
M. Arico, S. Imashuku, R. Clementi, et al.
Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene.
Blood, 97 (2001), pp. 1131-1133
[35.]
J.A. Bluestone, A.K. Abbas.
Natural versus adaptive regulatory T cells.
Nat. Rev. Immunol, 3 (2003),
[36.]
Gerli Roberto, Nocentini Giuseppe, Alunno Alessia, Bartoloni Elena, Bianchini Rodolfo, Bistoni Onelia, Riccardi Carlo.
Identification of regulatory T cells in systemic lupus erythematosus.
El sevier, 00756 (2009), pp. 1-5
[37.]
Chi-Mou Juang, Chien-Fu Hung, Jiun-Yih Yeh, Huann-Cheng Horng, Nae-Fong Twu, Ming-Huei Cheng, Kuo-Chang Wen, Chiou-Chung Yuan, Kuan-Chong Chao, TC Wu.
Regulatory T Cells: Potential Target in Anticancer Immunotherapy.
Taiwanese Journal of Obstetrics and Gynecology, 46 (2007), pp. 215-221
[38.]
J.D. Fontenot, M.A. Gavin, A.Y. Rudensky.
Foxp3 programs the development and function of CD4RCD25R regulatory T cells.
Nat Immunol, 4 (2003), pp. 330-336
[39.]
R. Khattri, T. Cox, S.A. Yasayko, F. Ramsdell.
An essential role for Scurfin in CD4RCD25R T regulatory cells.
Nat Immunol, 4 (2003), pp. 337-342
[40.]
P. Zaccone, Cooke anne.
Infectious triggers protect from autoimmunity.
Seminars in Immunology, 23 (2011), pp. 122-129
[41.]
A. Cooke, P. Zaccone, T. Raine, J.M. Phillips, D.W. Dunne.
Infection and autoimmunity:are we winning the war, only to lose the peace?.
Trends Parasitol, 20 (2004), pp. 316-321
[42.]
W.O. Weigle.
Self-nonself recognition by T and B lymphocytes and their roles in utoimmune phenomena.
Arthritis Rheum, 24 (1981), pp. 1044-1053
[43.]
N.M. Ellis, D.K. Kurahara, H. Vohra, A. Mascaro-Blanco, G. Erdem, E.E. Adderson, et al.
Priming the immune system for heart disease: a perspective on group A streptococci.
J Infect Dis, 202 (2010), pp. 1059-1067
[44.]
E.J. Rayfield, K.J. Kelly, J.W. Yoon.
Rubella virus-induced diabetes in the hamster.
Diabetes, 35 (1986), pp. 1278-1281
[45.]
A. Lehuen, J. Diana, P. Zaccone, A. Cooke.
Immune cell crosstalk in type 1 diabetes.
Nat Rev Immunol, 10 (2010), pp. 501-513
[46.]
A.M. Thornton, E.M. Shevach.
CD4þCD25þ immunoregulatory Tcells suppress polyclonal Tcell activation in vitro by inhibiting interleukin 2 production.
J Exp Med, 188 (1998), pp. 287-296
[47.]
A. Sugimoto, M. Suzuki, T. Otani, A. Okochi, M. Takeuchi, et al.
HOZOTs, novel human regulatory T-cell lines, exhibit helper or suppressor activities depending on dendritic cell or anti-CD3 stimulation.
Exp Hematol, 37 (2009), pp. 1454-1463
[48.]
S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, M. Toda.
Immunologic self tolerance maintained by activated T cells expressing IL-2 receptor α chain (CD25), breakdown of a single mechanism of self tolerance causes various autoimmune disease.
J Immunol, 155 (1995), pp. 1151-1164
[49.]
N. Askenasy, A. Kaminitz, S. Yarkoni.
Mechanisms of T regulatory cell function.
Autoimmun Rev, 7 (2008), pp. 370-375
[50.]
S. Mellor-Pita, M.J. Citores, R. Castejon, P. Tutor-Ureta, M. Yebra-Bango, J.L. Andreu, et al.
Decrease of regulatory T cells in patients with systemic lupus erythematosus.
Ann Rheum Dis, 65 (2006), pp. 553-554
[51.]
A. Suárez, P. López, J. Gómez, C. Gutiérrez.
Enrichment of CD4+ CD25high T cell population in patients with systemic lupus erythematosus treated with glucocorticoids.
Ann Rheum Dis, 65 (2006), pp. 1512-1517
[52.]
B. Zhang, X. Zhang, F. Tang, L. Zhu, Y. Liu.
Reduction of forkhead box P3 levels in CD4+CD25 high T cells in patients with new onset systemic lupus erythematosus.
Clin Exp Immunol, 153 (2008), pp. 182-187
[53.]
R.K. Chowdary Venigalla, T. Tretter, S. Krienke, R. Max, V. Eckstein, N. Blank, et al.
Reduced CD4+ CD25- T cell sensitivity to the suppressive function of CD4+CD25high CD127low regulatory T cells in patients with systemic lupus erythematosus.
Arthritis Rheum, 58 (2008), pp. 2120-2130
[54.]
H.Y. Lee, Y.K. Hong, H.J. Yun, Y.M. Kim, J.R. Kim, W.H. Yoo.
Altered frequency and migration capacity of CD4+ CD25+ regulatory T cells in systemic lupus erythematosus.
Rheumatology, 47 (2008), pp. 789-794
[55.]
X. Valencia, C. Yarboro, G. Illei, P.E. Lipsky.
Deficient CD4+CD25 (high) T regulatory cell function in patients with active systemic lupus erythematosus.
J mmunol, 178 (2007), pp. 2579-2588
[56.]
A.M. Cepika, I. Marinic, J. Morovic-Vergles, D. Soldo-Juresa, A. Gagro.
Effect of steroids on the frequency of regulatory Tcells and expression of FOXP3 in a patient with systemic lupus erythematosus: a two year followup.
Lupus, 16 (2007), pp. 374-377
[57.]
B. Kwon, K.Y. Yu, J. Ni, G.L. Yu, I.K. Jang, Y.J. Kim, et al.
Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand.
J Biol Chem, 274 (1999), pp. 6056-6061
[58.]
L.T. Krausz, R. Bianchini, S. Ronchetti, K. Fettuciari, G. Nocentini, C. Riccardi.
GITRL system, a novel player in shock and inflammation.
Sci World J, 7 (2007), pp. 533-566
[59.]
T. Ramirez-Montagut, A. Chow, D. Hirschhorn-Cymerman, T.H. Terwey, A.A. Kochman, S. Lu, et al.
Glucocorticoid- induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity.
J Immunol, 176 (2006), pp. 6434-6442

Los autores declaran no presentar ningún conflicto de interés al momento de la redacción del manuscrito.

Copyright © 2011. Asociación Colombiana de Reumatología
Descargar PDF
Opciones de artículo