metricas
covid
Buscar en
Revista Española de Cirugía Ortopédica y Traumatología
Toda la web
Inicio Revista Española de Cirugía Ortopédica y Traumatología Utilización de la capacidad de calcificación y osificación de la pared arteri...
Información de la revista
Vol. 49. Núm. 6.
Páginas 450-462 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 49. Núm. 6.
Páginas 450-462 (enero 2004)
Acceso a texto completo
Utilización de la capacidad de calcificación y osificación de la pared arterial para conseguir regeneración ósea completa en defectos de huesos largos*
Use of the calcification and ossification capacity of arterial walls to achieve bone regeneration in complete defects of long bones
Visitas
3521
M.A. Suárez-Suáreza,b,
Autor para correspondencia
miguel.suarez@sespa.princast.es

Correspondencia: Servicio de Cirugía Ortopédica y Traumatología. Hospital de Cabueñes-Gijón. C/ Los Prados, 395. 33203 Gijón.
, A. Murcia-Mazóna,b, J.C. de Vicente-Rodríguezb,c, P. Menéndez-Rodríguezd, M.A. del Brío-Leóne, P. Riera-Rovirae
a Servicio de Cirugía Ortopédica y Traumatología. Hospital de Cabueñes-Gijón. Gijón
b Departamento de Cirugía y Especialidades Médico-Quirúrgicas. Universidad de Oviedo. Oviedo
c Servicio de Cirugía Oral y Máxilo-Facial. Hospital Central de Asturias. Oviedo
d Servicio de Anatomía Patológica II. Hospital Central de Asturias. Oviedo
e Departamento de Morfología y Biología Celular. Universidad de Oviedo. Oviedo
Este artículo ha recibido
Información del artículo
Objetivo

Evaluar el uso de aloinjertos arteriales criopreservados como membranas de regeneración ósea guiada en defectos de hueso largo.

Material y método

Estudio experimental, prospectivo, aleatorizado y ciego. Se crearon defectos osteoperiósticos de 10 mm de longitud en el tercio medio de la diáfisis del radio de conejos de raza blanca de Nueva Zelanda. En los casos experimentales el defecto se aisló de los tejidos circundantes con un aloinjerto aórtico criopreservado, conforme a las técnicas de regeneración tisular guiada. En los controles no se colocó ningún tipo de membrana.

Resultados

No se obtuvo curación del defecto en ningún control. En 9 de los 10 defectos experimentales se observó una regeneración ósea completa, con un patrón similar al del hueso sano en los estudios con técnicas de diagnóstico por imagen, de cuantificación morfodensitométrica y de microscopía óptica y electrónica. Además, los estudios morfológicos y ultraestructurales han mostrado imágenes sugerentes de que los propios aloinjertos aórticos criopreservados pueden haber contribuido a la regeneración ósea en el defecto, por diferenciación osteoblástica de las «células calcificantes vasculares» de la pared arterial (una subpoblación de musculares lisas de la pared arterial que algunos autores consideran células madre adultas) y/o por calcificación u osificación inducida por alteraciones en las proteínas de la matriz extracelular arterial.

Conclusiones

Es posible utilizar aloinjertos arteriales criopreservados como membranas de osteopromoción para conseguir regeneración ósea completa en defectos diafisarios de hueso largo, siendo una alternativa al uso de membranas sintéticas.

Palabras clave:
regeneración ósea
regeneración tisular guiada
osteopromoción
calcificación arterial
Aim

To assess the use of cryopreserved arterial allograft membranes in guided bone regeneration (GBR) in bone defects of long bones.

Materials and methods

Prospective randomized blind study using white New Zealand rabbits as an animal model. Bone and periosteum defects 10 mm in length were created in the middle third of the shaft of the radius of white New Zealand rabbits.

In the rabbits in the study group the bone defect was isolated from surrounding tissues with a membrane of cryopreserved aortic allograft according to guided tissue regeneration (GTR) techniques.

In the rabbits in the control group no membrane was used.

Results

The defect did not heal in any of the rabbits in the control group. In 9 out of 10 of the rabbits in the study group there was complete bone regeneration. The regenerated bone had a similar pattern to that of healthy bone in diagnostic images, in morpho-densitometric quantification studies and when seen using light and electron microscopes. Morphological and microscopic images suggest that cryopreserved aortic allografts may have contributed to bone regeneration in the defect area by osteoblastic differentiation of calcifying vascular cells (CVC) of the arterial walls and/or by calcification or ossification induced by alterations of proteins of the arterial extracellular matrix.

Calcifying vascular cells are a sub-population of smooth muscle cells of the arterial walls that are considered to be adult stem cells by some authors.

Conclusions

It is possible to use cryopreserved arterial allografts as membranes to promote bone growth and achieve complete bone regeneration in long bone shaft defects. These membranes can be used as an alternative to synthetic membranes.

Key words:
bone regeneration
guided tissue regeneration
osteopromotion
arterial calcification
El Texto completo está disponible en PDF
Bibliografía
[1.]
G. Luo, P. Ducy, M.D. McKee, G.J. Pinero, E. Loyer, R.R. Behringer, et al.
Spontaneous calcification of arteries and cartilage in mice lacking matrix Gla protein.
Nature, 386 (1997), pp. 78-81
[2.]
R. Nyman, M. Magnusson, L. Sennerby, S. Nyman, D. Lundgren.
Membrane-guided bone regeneration. Segmental radius defects studied in the rabbit.
Acta Orthop Scand, 66 (1995), pp. 169-173
[3.]
O.M. Böstman, H.K. Pihlajamäki.
Adverse tissue reactions to bioabsorbable fixation devices.
Clin Orthop, 371 (2000), pp. 216-227
[4.]
J.P. Schmitz, R.R. Lemke, G. Zardeneta, J.O. Hollinger, S.B. Milam.
Isolation of particulate degradation debris 1 year after implantation of a guidor membrane for guided bone regeneration: case report.
J Oral Maxillofac Surg, 58 (2000), pp. 888-893
[5.]
R. Wallin, N. Wajih, G.T. Greenwood, D.C. Sane.
Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy.
Med Res Rev, 21 (2001), pp. 274-301
[6.]
K.E. Watson.
Pathophysiology of coronary calcification.
J Cardiovasc Risk, 7 (2000), pp. 93-97
[7.]
Y. Tintut, Z. Alfonso, T. Saine, K. Radcliff, K. Watson, K. Boström, et al.
Multilineage potential of cells from the artery wall.
Circulation, 108 (2003), pp. 2505-2510
[8.]
S. Steitz, M. Speer, G. Curinga, H. Yang, P. Haynes, R. Aebersold, et al.
Smooth muscle cell phenotypic transition associated with calcification.
Circ Res, 89 (2001), pp. 1147-1154
[9.]
N. Motomura, M. Imakita, C. Yutani, Y. Kitoh, Y. Kawashima, T. Oka.
Histological change in cryopreserved rat aortic allograft.
J Cardiovasc Surg, 36 (1995), pp. 53-60
[10.]
N. Motomura, M. Imakita, C. Yutani, S. Takamoto, Y. Kitoh, T. Tsuji, et al.
Histologic modification by cryopreservation in rat aortic allografts.
Ann Thorac Surg, 60 (1995), pp. 168-171
[11.]
J.P. Neves, S. Gulbenkian, T. Ramos, A.P. Martins, M.C. Caldas, R. Mascarenhas, et al.
Mechanism underlying degeneration of cryopreserved vascular homografts.
J Thorac Cardiovasc Surg, 113 (1997), pp. 1014-1021
[12.]
F. Arnaud.
Endothelial and smooth muscle changes of the thoracic and abdominal aorta with various types of cryopreservation.
J Surg Res, 89 (2000), pp. 147-154
[13.]
S.E. Langerak, M. Groenink, E.E. van der Wall, C. Wassenaar, E. Vanbavel, M.C. van Baal, et al.
Impact of current cryopreservation procedures on mechanical and functional properties of human aortic homografts.
Transpl Int, 14 (2001), pp. 248-255
[14.]
M. Osako, H. Otani, T. Yamamura, Y. Nakao, R. Hattori, H. Omiya, et al.
Alloinmune response may be involved in neointimal hyperplasia in cryopreserved aortic allografts.
Transplant Proc, 33 (2001), pp. 2566-2570
[15.]
G. Zellin, A. Linde.
Treatment of segmental defects in long bones using osteopromotive membranes and recombinant human bone morphogenetic protein-2. An experimental study in rabbits.
Scand J Plast Reconstr Surg Hand Surg, 31 (1997), pp. 97-104
[16.]
R.P. Meining, B. Rahn, S.M. Perren, S. Gogolewski.
Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide) membrane. A pilot study.
J Orthop Trauma, 10 (1996), pp. 178-190
[17.]
L. Pineda, M. Büsing, R. Meining, S. Gogolewski.
Bone regeneration with resorbable polymeric membranes. III. Efect of poly(L-lactide) membrane pore size on the bone healing process in large defects.
[18.]
R. Giardino, M. Fini, N.N. Aldini, G. Giavaresi, M. Rocca, L. Martini, et al.
A resorbable tubular chamber for the treatment of large diaphyseal bone defects. Experimental study in rabbits.
Int J Artif Organs, 21 (1998), pp. 473-482
[19.]
R.P. Meining, C.M. Buesing, J. Helm, S. Gogolewski.
regeneration of diaphyseal bone defects using resorbable poly(L/DLlactide) and poly(D-lactide) membranes in yucatan pig model.
J Orthop Trauma, 11 (1997), pp. 551-558
[20.]
S. Lu, Z. Zhang, J. Wang.
Guided bone regeneration in long bone. An experimental study.
Chin Med J (Engl), 109 (1996), pp. 551-554
[21.]
R. Giardino, M. Fini, N.N. Aldini, G. Giavares, M. Rocca.
Polylactide bioabsorbable polymers for guided tissue regeneration.
J Trauma, 47 (1999), pp. 303-308
[22.]
S. Gogolewski, L. Pineda, C.M. Büsing.
Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process.
Biomaterials, 21 (2000), pp. 2513-2520
[23.]
F.F. Nielsen, T. Karring, S. Gogolewski.
Biodegradable guide for bone regeneration. Polyurethane membranes tested in rabbit radius defects.
Acta Orthop Scand, 63 (1992), pp. 66-69
[24.]
Z. Gugala, S. Gogolewski.
Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes. A preliminary study.
J Orthop Trauma, 13 (1999), pp. 187-195
[25.]
P. Rossmann, J. Lácha, A. Lodererová.
Morphology and inmunohistochemistry of rat aortic grafts.
Folia Microbiol, 44 (1999), pp. 339-353
[26.]
K. Bojakowski, P. Religa, M. Bojakowska, U. Hedin, Z. Gaciong, J. Thiberg.
Arteriosclerosis in rat aortic allografts: early changes in endothelial integrity and smooth muscle phenotype.
Transplantation, 70 (2000), pp. 65-72
[27.]
J.F. Légaré, T. Issekutz, T.D.G. Lee, G. Hirsch.
CD8+ T linphocytes mediate destruction of the vascular media in a model of chronic rejection.
Am J Pathol, 157 (2000), pp. 859-865
[28.]
A. Greenwald, S. Doden, V. Golgberg, Y. Khan, C. Laurencin, R. Rosier.
Bone-graft substitutes: facts, fictions and applications.
[29.]
M. Joyce, A. Greenwald, J. Mowe, J. Kennedy, C. Heim, R. Rosier.
Musculoskeletal allograft tissue safety.
[30.]
S. Saito, N. Fukushima, Y. Kobayashi, N. Tori, Y. Tsukamoto, R. Shirakura.
Effects of cryopreservation of aortic xenografts on graft patency and immunogenicity.
Transplant Proc, 32 (2000), pp. 2398-2400

Premio Fundación SECOT-Mapfre 2004 a trabajos relacionados con la Cirugía Ortopédica y Traumatología.

Copyright © 2005. Sociedad Española de Cirugia Ortopédica y Traumatología (SECOT)
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos