metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Papel de la genética en la etiología de las sinucleinopatías
Información de la revista
Vol. 46. Núm. S1.
Páginas 3-11 (octubre 2011)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 46. Núm. S1.
Páginas 3-11 (octubre 2011)
Acceso a texto completo
Papel de la genética en la etiología de las sinucleinopatías
Role of genetics in the etiology of synucleinopathies
Visitas
6952
Xabier Elcoroaristizabal Martína, Fernando Gómez Bustob, M.C. González Fernándeza, y Marian M. de Pancorboa,
Autor para correspondencia
marianpancorbo@gmail.com

Autor para correspondencia.
a Grupo de Investigación BIOMICS, Departamento de Biología Celular A, Centro de Investigación y Estudios Avanzados (CIEA) Lucio Lascaray, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, España
b Residencia San Prudencio, Vitoria-Gasteiz, España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La familia de las proteínas conocidas como sinucleínas está compuesta por la α, la β y la γ-sinucleína. La proteína α-sinucleína es la más estudiada por su participación en procesos esenciales del sistema nervioso central. La neurotoxicidad de esta proteína está relacionada con la presencia de multiplicaciones (duplicaciones y triplicaciones) y mutaciones puntuales en la secuencia génica del gen de la α-sinucleína (SNCA), expresión diferencial de sus isoformas, así como variaciones en las modificaciones postransduccionales. Está relacionada con las inclusiones citoplasmáticas conocidas como cuerpos de Lewy y las neuritas de Lewy presentes también en las denominadas α-sinucleinopatías. En general, la proteína β-sinucleína codificada por el gen SNCB interviene como regulador de los procesos desencadenados por la α-sinucleína, viéndose alterada su función por variaciones en la secuencia génica, mientras que γ-sinucleína, codificada por el gen SNCG, parece jugar un papel transcendental en determinados procesos tumorales.

Palabras clave:
Sinucleínas
Demencia por cuerpos de Lewy
Enfermedad de Parkinson
Genética
Abstract

The protein family known as synucleins is composed of α-, β- and γ-synuclein. The most widely studied is the α-synuclein protein due to its participation in essential processes of the central nervous system. Neurotoxicity of this protein is related to the presence of multiplications (duplications and triplications) and point mutations in the gene sequence of the α-synuclein gene (SNCA), differential expression of its isoforms and variations in post-transductional modifications. Neurotoxicity is also related to cytoplasmic inclusions known as Lewy bodies (LBs) and Lewy neurites (LNs), which are also present in α-synucleinopathies. In general, the β-synuclein protein, codified by the SNCB gene, acts as a regulator of processes triggered by α-synuclein and its function is altered by variations in the gene sequence, while γ-synuclein, codified by the SNCG gene, seems to play a major role in certain tumoral processes.

Keywords:
Synucleins
Lewy body dementia
Parkinson's disease
Genetics
El Texto completo está disponible en PDF
Bibliografía
[1]
K. Ueda, H. Fukushima, E. Masliah, Y. Xia, A. Iwai, M. Yoshimoto, et al.
Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease.
Proc Natl Acad Sci USA., 90 (1993), pp. 11282-11286
[2]
R. Jakes, M.G. Spillantini, M. Goedert.
Identification of two distinct synucleins from human brain.
FEBS Lett., 345 (1994), pp. 27-32
[3]
L. Maroteaux, J.T. Campanelli, R.H. Scheller.
Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal.
J Neurosci., 8 (1988), pp. 2804-2815
[4]
A. Surguchov.
Molecular and cellular biology of synucleins.
Int Rev Cell Mol Biol., 270 (2008), pp. 225-317
[5]
R. Kruger, W. Kuhn, T. Muller, D. Woitalla, M. Graeber, S. Kosel, et al.
Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease.
Nat Genet., 18 (1998), pp. 106-108
[6]
M.H. Polymeropoulos, C. Lavedan, E. Leroy, S.E. Ide, A. Dehejia, A. Dutra, et al.
Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.
Science., 276 (1997), pp. 2045-2047
[7]
J.J. Zarranz, J. Alegre, J.C. Gómez-Esteban, E. Lezcano, R. Ros, I. Ampuero, et al.
The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia.
Ann Neurol., 55 (2004), pp. 164-173
[8]
K. Beyer.
Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers.
Acta Neuropathol., 112 (2006), pp. 237-251
[9]
C. Lavedan.
The synuclein family.
Genome Res., 8 (1998), pp. 871-880
[10]
H. Ohtake, P. Limprasert, Y. Fan, O. Onodera, A. Kakita, H. Takahashi, et al.
Beta-synuclein gene alterations in dementia with Lewy bodies.
Neurology., 63 (2004), pp. 805-811
[11]
H. Braak, D. Sandmann-Keil, W. Gai, E. Braak.
Extensive axonal Lewy neurites in Parkinson's disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry.
Neurosci Lett., 265 (1999), pp. 67-69
[12]
M.G. Spillantini, R.A. Crowther, R. Jakes, M. Hasegawa, M. Goedert.
Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies.
Proc Natl Acad Sci USA., 95 (1998), pp. 6469-6473
[13]
M.G. Spillantini, M. Goedert.
The alpha-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy.
Ann NY Acad Sci., 920 (2000), pp. 16-27
[14]
M.J. Martí, E. Tolosa, J. Campdelacreu.
Clinical overview of the synucleinopathies.
Mov Disord., 18 (2003), pp. S21-S27
[15]
Dawson TM. Parkinson's disease: Genetics and Pathogenesis. 1st ed New York: Informa Healthcare USA Inc; 2007. p. 404.
[16]
H. Ji, Y.E. Liu, T. Jia, M. Wang, J. Liu, G. Xiao, et al.
Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing.
Cancer Res., 57 (1997), pp. 759-764
[17]
X. Chen, H.A. De Silva, M.J. Pettenati, P.N. Rao, St. George-Hyslop, P. Roses, P.A.D. Roses.
The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI RFLP analysis.
Genomics., 26 (1995), pp. 425-427
[18]
A. Iwai, E. Masliah, M. Yoshimoto, N. Ge, L. Flanagan, H.A. De Silva, et al.
The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system.
Neuron., 14 (1995), pp. 467-475
[19]
S. Nakajo, S. Shioda, Y. Nakai, K. Nakaya.
Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization.
Brain Res Mol Brain Res., 27 (1994), pp. 81-86
[20]
J.M. George, H. Jin, W.S. Woods, D.F. Clayton.
Characterization of a novel protein regulated during the critical period for song learning in the zebra finch.
Neuron., 15 (1995), pp. 361-372
[21]
B. Monti, E. Polazzi, L. Batti, C. Crochemore, M. Virgili, A. Contestabile.
Alpha-synuclein protects cerebellar granule neurons against 6-hydroxydopamine-induced death.
J Neurochem., 103 (2007), pp. 518-530
[22]
S. Xu, M. Zhou, S. Yu, Y. Cai, A. Zhang, K. Ueda, et al.
Oxidative stress induces nuclear translocation of C-terminus of alpha-synuclein in dopaminergic cells.
Biochem Biophys Res Commun., 342 (2006), pp. 330-335
[23]
R.L. Clough, G. Dermentzaki, L. Stefanis.
Functional dissection of the alpha-synuclein promoter: transcriptional regulation by ZSCAN21 and ZNF219.
J Neurochem., 110 (2009), pp. 1479-1490
[24]
R.L. Clough, L. Stefanis.
A novel pathway for transcriptional regulation of alphasynuclein.
FASEB J., 21 (2007), pp. 596-607
[25]
C. Gómez-Santos, M. Barrachina, P. Giménez-Xavier, E. Dalfo, I. Ferrer, S. Ambrosio.
Induction of C/EBP beta and GADD153 expression by dopamine in human neuroblastoma cells. Relationship with alpha-synuclein increase and cell damage.
Brain Res Bull., 65 (2005), pp. 87-95
[26]
S.Y. Kao.
Rescue of alpha-synuclein cytotoxicity by insulin-like growth factors.
Biochem Biophys Res Commun., 385 (2009), pp. 434-438
[27]
Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010:baq020.
[28]
K. Beyer, M. Domingo-Sabat, J. Humbert, C. Carrato, I. Ferrer, A. Ariza.
Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease.
Neurogenetics., 9 (2008), pp. 163-172
[29]
K. Beyer, M. Domingo-Sabat, J.I. Lao, C. Carrato, I. Ferrer, A. Ariza.
Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases.
Neurogenetics., 9 (2008), pp. 15-23
[30]
D.F. Clayton, J.M. George.
The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease.
Trends Neurosci., 21 (1998), pp. 249-254
[31]
W.S. Davidson, A. Jonas, D.F. Clayton, J.M. George.
Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes.
J Biol Chem., 273 (1998), pp. 9443-9449
[32]
Bartels T, Ahlstrom LS, Leftin A, Kamp F, Haass C, Brown MF, et al. The N-terminus of the intrinsically disordered protein alpha-synuclein triggers membrane binding and helix folding. Biophys J.;99:2116-24.
[33]
H. Han, P.H. Weinreb, P.T. Lansbury Jr..
The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease?.
Chem Biol., 2 (1995), pp. 163-169
[34]
C.C. Jao, A. Der-Sarkissian, J. Chen, R. Langen.
Structure of membrane-bound alphasynuclein studied by site-directed spin labeling.
Proc Natl Acad Sci USA., 101 (2004), pp. 8331-8336
[35]
E.H. Norris, B.I. Giasson, V.M. Lee.
Alpha-synuclein: normal function and role in neurodegenerative diseases.
Curr Top Dev Biol., 60 (2004), pp. 17-54
[36]
P.H. Weinreb, W. Zhen, A.W. Poon, K.A. Conway, P.T. Lansbury Jr..
NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded.
Biochemistry., 35 (1996), pp. 13709-13715
[37]
B.I. Giasson, K. Uryu, J.Q. Trojanowski, V.M. Lee.
Mutant and wild type human alphasynucleins assemble into elongated filaments with distinct morphologies in vitro.
J Biol Chem., 274 (1999), pp. 7619-7622
[38]
K. Wakabayashi, S. Hayashi, M. Yoshimoto, H. Kudo, H. Takahashi.
NACP/alphasynuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson's disease brains.
Acta Neuropathol., 99 (2000), pp. 14-20
[39]
K. Beyer, A. Ariza.
Protein aggregation mechanisms in synucleinopathies: commonalities and differences.
J Neuropathol Exp Neurol., 66 (2007), pp. 965-974
[40]
A. Adamczyk, A. Kazmierczak, G.A. Czapski, J.B. Strosznajder.
Alpha-synuclein induced cell death in mouse hippocampal (HT22) cells is mediated by nitric oxidedependent activation of caspase-3.
FEBS Lett., 584 (2010), pp. 3504-3508
[41]
D. Campion, C. Martin, R. Heilig, F. Charbonnier, V. Moreau, J.M. Flaman, et al.
The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer disease.
Genomics., 26 (1995), pp. 254-257
[42]
K. Ueda, T. Saitoh, H. Mori.
Tissue-dependent alternative splicing of mRNA for NACP, the precursor of non-A beta component of Alzheimer's disease amyloid.
Biochem Biophys Res Commun., 205 (1994), pp. 1366-1372
[43]
K. Beyer, J.I. Lao, C. Carrato, J.L. Mate, D. López, I. Ferrer, et al.
Differential expression of alpha-synuclein isoforms in dementia with Lewy bodies.
Neuropathol Appl Neurobiol., 30 (2004), pp. 601-607
[44]
Z. Yu, X. Xu, Z. Xiang, J. Zhou, Z. Zhang, C. Hu, et al.
Nitrated alpha-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats.
[45]
T. Hunter.
Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling.
Cell., 80 (1995), pp. 225-236
[46]
C.E. Ellis, P.L. Schwartzberg, T.L. Grider, D.W. Fink, R.L. Nussbaum.
Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases.
J Biol Chem., 276 (2001), pp. 3879-3884
[47]
T. Nakamura, H. Yamashita, Y. Nagano, T. Takahashi, S. Avraham, H. Avraham, et al.
Activation of Pyk2/RAFTK induces tyrosine phosphorylation of alpha-synuclein via Src-family kinases.
FEBS Lett., 521 (2002), pp. 190-194
[48]
M. Okochi, J. Walter, A. Koyama, S. Nakajo, M. Baba, T. Iwatsubo, et al.
Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein.
J Biol Chem., 275 (2000), pp. 390-397
[49]
H. Fujiwara, M. Hasegawa, N. Dohmae, A. Kawashima, E. Masliah, M.S. Goldberg, et al.
Alpha-synuclein is phosphorylated in synucleinopathy lesions.
Nat Cell Biol., 4 (2002), pp. 160-164
[50]
W.W. Smith, R.L. Margolis, X. Li, J.C. Troncoso, M.K. Lee, V.L. Dawson, et al.
Alphasynuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells.
J Neurosci., 25 (2005), pp. 5544-5552
[51]
J.P. Anderson, D.E. Walker, J.M. Goldstein, R. De Laat, K. Banducci, R.J. Caccavello, et al.
Phosphorylation of Ser-129 is the dominant pathological modification of alphasynuclein in familial and sporadic Lewy body disease.
J Biol Chem., 281 (2006), pp. 29739-29752
[52]
Y. Saito, A. Kawashima, N.N. Ruberu, H. Fujiwara, S. Koyama, M. Sawabe, et al.
Accumulation of phosphorylated alpha-synuclein in aging human brain.
J Neuropathol Exp Neurol., 62 (2003), pp. 644-654
[53]
H. Lou, S.E. Montoya, T.N. Alerte, J. Wang, J. Wu, X. Peng, et al.
Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo.
J Biol Chem., 285 (2010), pp. 17648-17661
[54]
L. Chen, M. Periquet, X. Wang, A. Negro, P.J. McLean, B.T. Hyman, et al.
Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation.
J Clin Invest., 119 (2009), pp. 3257-3265
[55]
K.E. Paleologou, A. Oueslati, G. Shakked, C.C. Rospigliosi, H.Y. Kim, G.R. Lamberto, et al.
Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions.
J Neurosci., 30 (2010), pp. 3184-3198
[56]
K.E. Paleologou, A.W. Schmid, C.C. Rospigliosi, H.Y. Kim, G.R. Lamberto, R.A. Fredenburg, et al.
Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein.
J Biol Chem., 283 (2008), pp. 16895-16905
[57]
A. Al-Wandi, N. Ninkina, S. Millership, S.J. Williamson, P.A. Jones, V.L. Buchman.
Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice.
Neurobiol Aging., 31 (2010), pp. 796-804
[58]
B. Greten-Harrison, M. Polydoro, M. Morimoto-Tomita, L. Diao, A.M. Williams, E.H. Nie, et al.
{alpha}{beta}{gamma}-synuclein triple knockout mice reveal age-dependent neuronal dysfunction.
Proc Natl Acad Sci USA., 107 (2010), pp. 19573-19578
[59]
P.H. Jensen, M.S. Nielsen, R. Jakes, C.G. Dotti, M. Goedert.
Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation.
J Biol Chem., 273 (1998), pp. 26292-26294
[60]
P.J. McLean, H. Kawamata, S. Ribich, B.T. Hyman.
Membrane association and protein conformation of alpha-synuclein in intact neurons.
Effect of Parkinson's diseaselinked mutations. J Biol Chem., 275 (2000), pp. 8812-8816
[61]
J. Lotharius, P. Brundin.
Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease.
Hum Mol Genet., 11 (2002), pp. 2395-2407
[62]
T. Ben Gedalya, V. Loeb, E. Israeli, Y. Altschuler, D.J. Selkoe, R. Sharon.
Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling.
[63]
J.M. Jenco, A. Rawlingson, B. Daniels, A.J. Morris.
Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins.
Biochemistry., 37 (1998), pp. 4901-4909
[64]
B.H. Ahn, H. Rhim, S.Y. Kim, Y.M. Sung, M.Y. Lee, J.Y. Choi, et al.
Alpha-synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells.
J Biol Chem., 277 (2002), pp. 12334-12342
[65]
I. Rappley, A.D. Gitler, P.E. Selvy, M.J. LaVoie, B.D. Levy, H.A. Brown, et al.
Evidence that alpha-synuclein does not inhibit phospholipase D.
Biochemistry., 48 (2009), pp. 1077-1083
[66]
S. Bellani, V.L. Sousa, G. Ronzitti, F. Valtorta, J. Meldolesi, E. Chieregatti.
The regulation of synaptic function by alpha-synuclein.
Commun Integr Biol., 3 (2010), pp. 106-109
[67]
A. Abeliovich, Y. Schmitz, I. Farinas, D. Choi-Lundberg, W.H. Ho, P.E. Castillo, et al.
Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system.
Neuron., 25 (2000), pp. 239-252
[68]
I. Ferrer.
Alpha-synucleinopathies. Neurologia, 16 (2001), pp. 163-170
[69]
N. Ostrerova, L. Petrucelli, M. Farrer, N. Mehta, P. Choi, J. Hardy, et al.
Alpha-synuclein shares physical and functional homology with 14-3-3 proteins.
J Neurosci., 19 (1999), pp. 5782-5791
[70]
R.G. Pérez, J.C. Waymire, E. Lin, J.J. Liu, F. Guo, M.J. Zigmond.
A role for alpha-synuclein in the regulation of dopamine biosynthesis.
J Neurosci., 22 (2002), pp. 3090-3099
[71]
L. Zhang, H. Wang, D. Liu, R. Liddington, H. Fu.
Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49.
J Biol Chem., 272 (1997), pp. 13717-13724
[72]
T.N. Alerte, A.A. Akinfolarin, E.E. Friedrich, S.A. Mader, C.S. Hong, R.G. Pérez.
Alphasynuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice.
Neurosci Lett., 435 (2008), pp. 24-29
[73]
T. Ichimura, T. Isobe, T. Okuyama, N. Takahashi, K. Araki, R. Kuwano, et al.
Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinasedependent activator of tyrosine and tryptophan hydroxylases.
Proc Natl Acad Sci USA., 85 (1988), pp. 7084-7088
[74]
W.J. Burke, S.W. Li, H.D. Chung, D.A. Ruggiero, B.S. Kristal, E.M. Johnson, et al.
Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative diseases.
Neurotoxicology., 25 (2004), pp. 101-115
[75]
G. Eisenhofer, I.J. Kopin, D.S. Goldstein.
Catecholamine metabolism: a contemporary view with implications for physiology and medicine.
Pharmacol Rev., 56 (2004), pp. 331-349
[76]
M. Bisaglia, S. Mammi, L. Bubacco.
Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein.
J Biol Chem., 282 (2007), pp. 15597-15605
[77]
K.A. Conway, J.C. Rochet, R.M. Bieganski, P.T. Lansbury Jr..
Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct.
Science., 294 (2001), pp. 1346-1349
[78]
M. Martínez-Vicente, Z. Talloczy, S. Kaushik, A.C. Massey, J. Mazzulli, E.V. Mosharov, et al.
Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy.
J Clin Invest., 118 (2008), pp. 777-788
[79]
M. Bisaglia, E. Greggio, D. Maric, D.W. Miller, M.R. Cookson, L. Bubacco.
Alphasynuclein overexpression increases dopamine toxicity in BE2-M17 cells.
BMC Neurosci., 11 (2010), pp. 41
[80]
P. Damier, E.C. Hirsch, Y. Agid, A.M. Graybiel.
The substantia nigra of the human brain.
II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain., 122 (1999), pp. 1437-1448
[81]
J. Arita, F. Kimura.
In vitro dopamine biosynthesis in the median eminence of rat hypothalamic slices: involvement of voltage-dependent Ca2+ channels.
Brain Res., 347 (1985), pp. 299-305
[82]
E.V. Mosharov, K.E. Larsen, E. Kanter, K.A. Phillips, K. Wilson, Y. Schmitz, et al.
Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons.
[83]
C.S. Chan, J.N. Guzmán, E. Ilijic, J.N. Mercer, C. Rick, T. Tkatch, et al.
‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease.
Nature., 447 (2007), pp. 1081-1086
[84]
J.W. Touchman, A. Dehejia, O. Chiba-Falek, D.E. Cabin, J.R. Schwartz, B.M. Orrison, et al.
Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element.
Genome Res., 11 (2001), pp. 78-86
[85]
Y. Shibasaki, D.A. Baillie, St. Clair, D.A.J. Brookes.
High-resolution mapping of SNCA encoding alpha-synuclein, the non-A beta component of Alzheimer's disease amyloid precursor, to human chromosome 4q21.3 → q22 by fluorescence in situ hybridization.
Cytogenet Cell Genet., 71 (1995), pp. 54-55
[86]
T. Tanaka.
HapMap project.
Nippon Rinsho., 67 (2009), pp. 1068-1071
[87]
J.P. Jenuth.
The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol, 132 (2000), pp. 301-312
[88]
K. Beyer, J. Humbert, A. Ferrer, J.I. Lao, P. Latorre, D. López, et al.
A variable poly-T sequence modulates alpha-synuclein isoform expression and is associated with aging.
J Neurosci Res., 85 (2007), pp. 1538-1546
[89]
L. Yu, P. Xu, X. He, F. Hu, Z. Lin, M. Zhu, et al.
SNP rs7684318 of the alpha-synuclein gene is associated with Parkinson's disease in the Han Chinese population.
Brain Res., 1346 (2010), pp. 262-265
[90]
A. Al-Chalabi, A. Durr, N.W. Wood, M.H. Parkinson, A. Camuzat, J.S. Hulot, et al.
Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy.
[91]
E.K. Tan, A. Chai, Y.Y. Teo, Y. Zhao, C. Tan, H. Shen, et al.
Alpha-synuclein haplotypes implicated in risk of Parkinson's disease.
Neurology., 62 (2004), pp. 128-131
[92]
D.M. Maraganore, M. De Andrade, A. Elbaz, M.J. Farrer, J.P. Ioannidis, R. Kruger, et al.
Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease.
JAMA., 296 (2006), pp. 661-670
[93]
R. Myhre, M. Toft, J. Kachergus, M.M. Hulihan, J.O. Aasly, H. Klungland, et al.
Multiple alpha-synuclein gene polymorphisms are associated with Parkinson's disease in a Norwegian population.
Acta Neurol Scand., 118 (2008), pp. 320-327
[94]
P. Spadafora, G. Annesi, A.A. Pasqua, P. Serra, I.C. Ciro Candiano, S. Carrideo, et al.
NACPREP1 polymorphism is not involved in Parkinson's disease: a case-control study in a population sample from southern Italy.
Neurosci Lett., 351 (2003), pp. 75-78
[95]
O.A. Ross, D. Gosal, J.T. Stone, S.J. Lincoln, M.G. Heckman, G.B. Irvine, et al.
Familial genes in sporadic disease: common variants of alpha-synuclein gene associate with Parkinson's disease.
Mech Ageing Dev., 128 (2007), pp. 378-382
[96]
C. Linnertz, L. Saucier, D. Ge, K.D. Cronin, J.R. Burke, J.N. Browndyke, et al.
Genetic regulation of alpha-synuclein mRNA expression in various human brain tissues.
[97]
I.F. Mata, M. Shi, P. Agarwal, K.A. Chung, K.L. Edwards, S.A. Factor, et al.
SNCA variant associated with Parkinson disease and plasma alpha-synuclein level.
Arch Neurol., 67 (2010), pp. 1350-1356
[98]
O. Chiba-Falek, J.W. Touchman, R.L. Nussbaum.
Functional analysis of intra-allelic variation at NACP-Rep1 in the alpha-synuclein gene.
Hum Genet., 113 (2003), pp. 426-431
[99]
S. Sotiriou, G. Gibney, A.D. Baxevanis, R.L. Nussbaum.
A single nucleotide polymorphism in the 3’UTR of the SNCA gene encoding alpha-synuclein is a new potential susceptibility locus for Parkinson disease.
Neurosci Lett., 461 (2009), pp. 196-201
[100]
F.Y. Hu, W.B. Hu, L. Liu, L.H. Yu, J. Xi, X.H. He, et al.
Lack of replication of a previously reported association between polymorphism in the 3’UTR of the alpha-synuclein gene and Parkinson's disease in Chinese subjects.
Neurosci Lett., 479 (2010), pp. 31-33
[101]
S. Winkler, J. Hagenah, S. Lincoln, M. Heckman, K. Haugarvoll, K. Lohmann-Hedrich, et al.
Alpha-synuclein and Parkinson disease susceptibility.
Neurology., 69 (2007), pp. 1745-1750
[102]
A. Rajput, C. Vilarino-Guell, M.L. Rajput, O.A. Ross, A.I. Soto-Ortolaza, S.J. Lincoln, et al.
Alpha-synuclein polymorphisms are associated with Parkinson's disease in a Saskatchewan population.
Mov Disord., 24 (2009), pp. 2411-2414
[103]
E. Junn, K.W. Lee, B.S. Jeong, T.W. Chan, J.Y. Im, M.M. Mouradian.
Repression of alphasynuclein expression and toxicity by microRNA-7.
Proc Natl Acad Sci USA., 106 (2009), pp. 13052-13057
[104]
S.P. Otto, P. Yong.
The evolution of gene duplicates.
Adv Genet., 46 (2002), pp. 451-483
[105]
L. Zhang, B.S. Gaut, T.J. Vision.
Gene duplication and evolution.
Science., 293 (2001), pp. 1551
[106]
Z. Zhang, J. Gu, X. Gu.
How much expression divergence after yeast gene duplication could be explained by regulatory motif evolution?.
Trends Genet., 20 (2004), pp. 403-407
[107]
M.C. Chartier-Harlin, J. Kachergus, C. Roumier, V. Mouroux, X. Douay, S. Lincoln, et al.
Alpha-synuclein locus duplication as a cause of familial Parkinson's disease.
Lancet., 364 (2004), pp. 1167-1169
[108]
P. Ibánez, A.M. Bonnet, B. Debarges, E. Lohmann, F. Tison, P. Pollak, et al.
Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease.
Lancet., 364 (2004), pp. 1169-1171
[109]
D.W. Miller, S.M. Hague, J. Clarimon, M. Baptista, K. Gwinn-Hardy, M.R. Cookson, et al.
Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication.
Neurology., 62 (2004), pp. 1835-1838
[110]
A.B. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague, J. Kachergus, et al.
Alphasynuclein locus triplication causes Parkinson's disease.
Science., 302 (2003), pp. 841
[111]
S. Keri, A.A. Moustafa, C.E. Myers, G. Benedek, M.A. Gluck.
[alpha]-Synuclein gene duplication impairs reward learning.
Proc Natl Acad Sci USA., 107 (2010), pp. 15992-15994
[112]
K. Nishioka, S. Hayashi, M.J. Farrer, A.B. Singleton, H. Yoshino, H. Imai, et al.
Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease.
Ann Neurol., 59 (2006), pp. 298-309
[113]
A.R. Winslow, C.W. Chen, S. Corrochano, A. Acevedo-Arozena, D.E. Gordon, A.A. Peden, et al.
Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease.
J Cell Biol., 190 (2010), pp. 1023-1037
[114]
T. Ikeuchi, A. Kakita, A. Shiga, K. Kasuga, H. Kaneko, C.F. Tan, et al.
Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia.
Arch Neurol., 65 (2008), pp. 514-519
[115]
T.B. Ahn, S.Y. Kim, J.Y. Kim, S.S. Park, D.S. Lee, H.J. Min, et al.
alpha-Synuclein gene duplication is present in sporadic Parkinson disease.
[116]
N. Brueggemann, P. Odin, A. Gruenewald, V. Tadic, J. Hagenah, G. Seidel, et al.
Re: Alpha-synuclein gene duplication is present in sporadic Parkinson disease [author reply].
[117]
A.R. Troiano, C. Cazeneuve, I. Le Ber, A.M. Bonnet, S. Lesage, A. Brice.
Re: Alphasynuclein gene duplication is present in sporadic Parkinson disease [author reply].
[118]
P.J. Jensen, B.J. Alter, K.L. O’Malley.
Alpha-synuclein protects naive but not dbcAMPtreated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity.
J Neurochem., 86 (2003), pp. 196-209
[119]
C. Alves da Costa, E. Paitel, B. Vincent, F. Checler.
Alpha-synuclein lowers p53-dependent apoptotic response of neuronal cells.
Abolishment by 6-hydroxydopamine and implication for Parkinson's disease. J Biol Chem., 277 (2002), pp. 50980-50984
[120]
C.A. Da Costa, K. Ancolio, F. Checler.
Wild-type but not Parkinson's disease-related ala-53 → Thr mutant alpha -synuclein protects neuronal cells from apoptotic stimuli.
J Biol Chem., 275 (2000), pp. 24065-24069
[121]
R.J. Perrin, W.S. Woods, D.F. Clayton, J.M. George.
Interaction of human alpha-Synuclein and Parkinson's disease variants with phospholipids.
Structural analysis using site-directed mutagenesis. J Biol Chem., 275 (2000), pp. 34393-34398
[122]
V.L. Sousa, S. Bellani, M. Giannandrea, M. Yousuf, F. Valtorta, J. Meldolesi, et al.
[alpha]- Synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics.
Mol Biol Cell., 20 (2009), pp. 3725-3739
[123]
A.R. Saha, J. Hill, M.A. Utton, A.A. Asuni, S. Ackerley, A.J. Grierson, et al.
Parkinson's disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons.
J Cell Sci., 117 (2004), pp. 1017-1024
[124]
E.A. Greenbaum, C.L. Graves, A.J. Mishizen-Eberz, M.A. Lupoli, D.R. Lynch, S.W. Englander, et al.
The E46K mutation in alpha-synuclein increases amyloid fibril formation.
J Biol Chem., 280 (2005), pp. 7800-7807
[125]
C.C. Rospigliosi, S. McClendon, A.W. Schmid, T.F. Ramlall, P. Barre, H.A. Lashuel, et al.
E46K Parkinson's-linked mutation enhances C-terminal-to-N-terminal contacts in alpha-synuclein.
J Mol Biol., 388 (2009), pp. 1022-1032
[126]
V.L. Anderson, T.F. Ramlall, C.C. Rospigliosi, W.W. Webb, D. Eliezer.
Identification of a helical intermediate in trifluoroethanol-induced alpha-synuclein aggregation.
Proc Natl Acad Sci USA., 107 (2010), pp. 18850-18855
[127]
R. Harada, N. Kobayashi, J. Kim, C. Nakamura, S.W. Han, K. Ikebukuro, et al.
The effect of amino acid substitution in the imperfect repeat sequences of alpha-synuclein on fibrillation.
Biochim Biophys Acta., 1792 (2009), pp. 998-1003
[128]
W. Choi, S. Zibaee, R. Jakes, L.C. Serpell, B. Davletov, R.A. Crowther, et al.
Mutation E46K increases phospholipid binding and assembly into filaments of human alphasynuclein.
FEBS Lett., 576 (2004), pp. 363-368
[129]
K.A. Conway, J.D. Harper, P.T. Lansbury.
Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease.
Nat Med., 4 (1998), pp. 1318-1320
[130]
L. Narhi, S.J. Wood, S. Steavenson, Y. Jiang, G.M. Wu, D. Anafi, et al.
Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation.
J Biol Chem., 274 (1999), pp. 9843-9846
[131]
A.M. Cuervo, L. Stefanis, R. Fredenburg, P.T. Lansbury, D. Sulzer.
Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy.
Science., 305 (2004), pp. 1292-1295
[132]
P.J. Kahle, C. Haass, H.A. Kretzschmar, M. Neumann.
Structure/function of alphasynuclein in health and disease: rational development of animal models for Parkinson's and related diseases.
J Neurochem., 82 (2002), pp. 449-457
[133]
E.W. Sayers, T. Barrett, D.A. Benson, E. Bolton, S.H. Bryant, K. Canese, et al.
Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res., 38 (2010), pp. D5-D16
[134]
J.E. Duda, V.M. Lee, J.Q. Trojanowski.
Neuropathology of synuclein aggregates.
[135]
V.N. Uversky, J. Li, P. Souillac, I.S. Millett, S. Doniach, R. Jakes, et al.
Biophysica properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins.
J Biol Chem., 277 (2002), pp. 11970-11978
[136]
H. Snyder, K. Mensah, C. Hsu, M. Hashimoto, I.G. Surgucheva, B. Festoff, et al.
Betasynuclein reduces proteasomal inhibition by alpha-synuclein but not gammasynuclein.
J Biol Chem., 280 (2005), pp. 7562-7569
[137]
Y. Fan, P. Limprasert, I.V. Murray, A.C. Smith, V.M. Lee, J.Q. Trojanowski, et al.
Betasynuclein modulates alpha-synuclein neurotoxicity by reducing alpha-synuclein protein expression.
Hum Mol Genet., 15 (2006), pp. 3002-3011
[138]
E. Israeli, R. Sharon.
Beta-synuclein occurs in vivo in lipid-associated oligomers and forms hetero-oligomers with alpha-synuclein.
J Neurochem., 108 (2009), pp. 465-474
[139]
P.K. Auluck, H.Y. Chan, J.Q. Trojanowski, V.M. Lee, N.M. Bonini.
Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease.
Science., 295 (2002), pp. 865-868
[140]
M. Hashimoto, P. Bar-On, G. Ho, T. Takenouchi, E. Rockenstein, L. Crews, et al.
Betasynuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson's disease.
J Biol Chem., 279 (2004), pp. 23622-23629
[141]
T.D. Kim, S.R. Paik, C.H. Yang, J. Kim.
Structural changes in alpha-synuclein affect its chaperone-like activity in vitro.
Protein Sci., 9 (2000), pp. 2489-2496
[142]
D. Lee, S.R. Paik, K.Y. Choi.
Beta-synuclein exhibits chaperone activity more efficiently than alpha-synuclein.
FEBS Lett., 576 (2004), pp. 256-260
[143]
A. Rekas, C.G. Adda, J. Andrew Aquilina, K.J. Barnham, M. Sunde, D. Galatis, et al.
Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity.
J Mol Biol., 340 (2004), pp. 1167-1183
[144]
A.N. Pronin, A.J. Morris, A. Surguchov, J.L. Benovic.
Synucleins are a novel class of substrates for G protein-coupled receptor kinases.
J Biol Chem., 275 (2000), pp. 26515-26522
[145]
C. Lavedan, E. Leroy, R. Torres, A. Dehejia, A. Dutra, S. Buchholtz, et al.
Genomic organization and expression of the human beta-synuclein gene (SNCB).
Genomics., 54 (1998), pp. 173-175
[146]
L. Brighina, N.U. Okubadejo, N.K. Schneider, T.G. Lesnick, M. De Andrade, J.M. Cunningham, et al.
Beta-synuclein gene variants and Parkinson's disease: a preliminary case-control study.
Neurosci Lett., 420 (2007), pp. 229-234
[147]
I. Surgucheva, B. McMahon, A. Surguchov.
Gamma-synuclein has a dynamic intracellular localization.
Cell Motil Cytoskeleton., 63 (2006), pp. 447-458
[148]
I. Surgucheva, B. McMahan, F. Ahmed, S. Tomarev, M.B. Wax, A. Surguchov.
Synucleins in glaucoma: implication of gamma-synuclein in glaucomatous alterations in the optic nerve.
J Neurosci Res., 68 (2002), pp. 97-106
[149]
A. Surguchov, B. McMahan, E. Masliah, I. Surgucheva.
Synucleins in ocular tissues.
J Neurosci Res., 65 (2001), pp. 68-77
[150]
V.L. Buchman, J. Adu, L.G. Pinon, N.N. Ninkina, A.M. Davies.
Persyn, a member of the synuclein family, influences neurofilament network integrity.
Nat Neurosci., 1 (1998), pp. 101-103
[151]
V.L. Buchman, H.J. Hunter, L.G. Pinon, J. Thompson, E.M. Privalova, N.N. Ninkina, et al.
Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system.
J Neurosci., 18 (1998), pp. 9335-9341
[152]
Y.M. Gu, J.X. Tan, X.W. Lu, Y. Ding, X. Han, Y.J. Sun.
BCSG1 methylation status and BCSG1 expression in breast tissues derived from Chinese women with breast cancer.
Oncology., 74 (2008), pp. 61-68
[153]
A. Lu, Q. Li, J. Liu.
Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells.
Sci China C Life Sci., 49 (2006), pp. 403-408
[154]
A. Lu, F. Zhang, A. Gupta, J. Liu.
Blockade of AP1 transactivation abrogates the abnormal expression of breast cancer-specific gene 1 in breast cancer cells.
J Biol Chem., 277 (2002), pp. 31364-31372
[155]
N.N. Ninkina, M.V. Alimova-Kost, J.W. Paterson, L. Delaney, B.B. Cohen, S. Imreh, et al.
Organization, expression and polymorphism of the human persyn gene.
Hum Mol Genet., 7 (1998), pp. 1417-1424
[156]
C. Lavedan, A. Dehejia, B. Pike, A. Dutra, E. Leroy, S.E. Ide, et al.
Contig map of the Parkinson's disease region on 4q21-q23.
DNA Res, 5 (1998), pp. 19-23
[157]
J.J Su, H.J. Xie, W.W. Zhao, H.X. Han, T. Gao, L. Xu, et al.
Study on gamma-synuclein gene in patients with idiopathic Parkinson's disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi., 20 (2003), pp. 444-446
[158]
R. Kruger, L. Schols, T. Muller, W. Kuhn, D. Woitalla, H. Przuntek, et al.
Evaluation of the gamma-synuclein gene in German Parkinson's disease patients.
Neurosci Lett., 310 (2001), pp. 191-193
[159]
J.M. Flowers, P.N. Leigh, A.M. Davies, N.N. Ninkina, V.L. Buchman, J. Vaughan, et al.
Mutations in the gene encoding human persyn are not associated with amyotrophic lateral sclerosis or familial Parkinson's disease.
Neurosci Lett., 274 (1999), pp. 21-24
[160]
K. Nishioka, C. Wider, C. Vilarino-Guell, A.I. Soto-Ortolaza, S.J. Lincoln, J.M. Kachergus, et al.
Association of alpha-, beta-, and gamma-synuclein with diffuse lewy body disease.
Arch Neurol., 67 (2010), pp. 970-975
Copyright © 2011. SEGG
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos