metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Acción de la melatonina en el proceso de envejecimiento
Información de la revista
Vol. 36. Núm. 5.
Páginas 262-269 (enero 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 36. Núm. 5.
Páginas 262-269 (enero 2001)
Acceso a texto completo
Acción de la melatonina en el proceso de envejecimiento
Action of melatonin in the aging process
Visitas
22174
B. Díaz López
Autor para correspondencia
beatrizd@correo.uniovi.es

Correspondencia: B. Díaz López. Departamento de Biología Funcional. Área Fisiología. Facultad de Medicina. Universidad de Oviedo. Julián Clavería, 6. 33006 Oviedo.
Departamento de Biología Funcional. Área Fisiología. Facultad de Medicina. Universidad de Oviedo
Este artículo ha recibido
Información del artículo
Resumen

La melatonina es sintetizada por la glándula pineal siguiendo un patrón circadiano con los niveles elevados durante las horas de oscuridad. El patrón de secreción de melatonina evoluciona a lo largo de la vida, alcanza los valores más altos entre 1 y 3 años, entre 15 y 20 años experimenta una caída del 80%. Durante las décadas siguientes, sus niveles disminuyen moderadamente hasta los 70-90 años. Precisamente este descenso en los niveles de melatonina coincidiendo con el proceso de envejecimiento sano, ha movido a muchos investigadores a plantearse los posibles efectos de la melatonina como substancia capaz de retrasar el proceso del envejecimiento o paliar los desórdenes derivados del mismo. Los campos de investigación más destacados en estos últimos años han sido: efectos de la melatonina como agente antioxidante y como regulador circadiano, y/o variaciones relacionadas con el ciclo sueño/vigilia dependientes de la edad. Los resultados científicos han puesto de manifiesto la capacidad antioxidante de la melatonina en todos los modelos experimentales estudiados. Como hormona reguladora del sueño ha mostrado ser eficaz mejorando la calidad del sueño, siempre que el insomnio esté asociado a producción nocturna de melatonina disminuida.

Palabras clave:
Melatonina
Envejecimiento
Capacidad antioxidante
Sueño
Summary

Melatonin (MLT) is synthesized by the pineal gland following a circadian rhythm with increased levels at nighttime. The secretion pattern develops during lifetime, reaching its highest values at 1-3 years old and then experiencing an 80% fall at between 15-20 years old. In the following decades, the serum MLT declines moderately up to ages 70-90 years. This decrease in melatonin levels coinciding with the healthy aging processes has led many investigators to suggest the possible effects of melatonin as a substance that can delay aging or alleviatedisorders from it. The most outstanding fields of investigation in recent years have been on the effects of melatonin as an anti-oxidative agent as circadian regulator and/or age-dependent variations related with the sleep/wake cycle. The scientific results have manifested the anti-oxidative capacity of melatonin in all the experimental models studied. As a sleep regulator hormone, it has been shown to be effective in improving sleep quality, as long as the insomnia is associated with the nocturnal MLT deficiency.

Key words:
Melatonin
Aging
Antioxidative capacity
Sleep
El Texto completo está disponible en PDF
Bibliografía
[1.]
B. Poeggeler, Balzerl, R. Hardeland, A. Lerchl.
Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra.
Naturwissenschaften, 78 (1991), pp. 268-269
[2.]
S.M. Reppert, D.R. Weaver.
Melatonin madness.
Cell, 83 (1995), pp. 1059-1062
[3.]
A.B. Lerner, J.D. Case, Y. Takahashi, T.H. Lee, N. Mori.
Isolation of melatonin, pineal factor that lightens melanocytes.
J Am Chem Soc, (1958), pp. 80-2587
[4.]
R.Y. Moore.
The innervation of the mammalian pineal gland.
Prog Reprod Biol, 4 (1978), pp. 1-29
[5.]
J. Bruce, L. Tamarkin, C. Riedel, S. Markeys, E. Oldfield.
Sequential cerebroespinal fluid and plasma sampling in humans: 24-hour melatonin measurements in normal subjects and after peripheral sympathectomy.
J Clin Endocrinol Metab, 72 (1991), pp. 819-823
[6.]
M. Wilkinson, J. Arendt, J. Bradtke, D. de Ziegler.
Determination of a darkinduced increase of pineal N-acetyltransferase activity and simultaneousradioinmunoassay of melatonin in pineal, serum and pituitary tissue of the male rat.
J Endocrinol, 72 (1977), pp. 243-244
[7.]
F. Waldhauser, G. Weiszenbacher, E. Tatzer, B. Gisinger, M. Waldhauser, M. Schemper, et al.
Alterations in nocturnal serum melatonin levels in humans with growth and aging.
J Clin Endocrinol Metab, 66 (1988), pp. 648-652
[8.]
L. Wetterberg, J.D. Bergiannaki, T. Paparrigopoulos, L. von Knorring, G. Eberhard, T. Bratlid, et al.
Do plasma melatonin concentrations decline with age?.
Psychoneuroendocrinology, 24 (1999), pp. 209-226
[9.]
D.J. Kennaway, K. Lushington, D. Dawson, L. Lack, C. van den Heuvel, N. Rogers.
Urinary 6-sulfatoxymelatonin excretion and aging: new results and critical review of the literature.
J Pineal Res, 27 (1999), pp. 210-220
[10.]
Y. Ohashi, N. Okamoto, K. Uchida, M. Iyo, N. Mori, Y. Morita.
Differential pattern of the circadian rhythm of serum melatonin in young and elderly healthy subjects.
Biol Signals, 6 (1997), pp. 301-306
[11.]
J.M. Zeitzer, J.E. Daniels, J.F. Duffy, E.B. Klerman, T.L. Shanahan, D.J. Dijk, et al.
Normative melatonin excretion: A multinational study.
Am J Med, 107 (1999), pp. 432-436
[12.]
L.D. Van der Kar, S.A. Lorens.
Diferential serotoninergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median midbrain raphe nuclei.
Brain Res, 162 (1979), pp. 45-54
[13.]
K. Homma, W. Wuttke.
Norepinephrine and dopamine turnover rates in the medial preoptic areas and the mediobasal hypothalamus of the rat brain after various endocrinological manipulations.
Endocrinology, 106 (1980), pp. 1849-1854
[14.]
I.M. McIntyre, G.F. Oxenkrug.
Effect of ageing on melatonin synthesis induced by 5-hydroxytryptophan and constant light in rats.
Prog Neuropsychopharmacol Biol Psychiatry, 15 (1991), pp. 561-566
[15.]
E.M. Dax, D. Sugden.
Age-associated changes in pineal adrenergic receptors and melatonin synthesizing enzymes in the Wistar rat.
J Neurochem, 50 (1988), pp. 468-472
[16.]
S. Reuss, J. Olcese, L. Vollrath.
Electrophysiological and endocrinological aspects of aging in the rat pineal gland.
Neuroendocrinology, 43 (1986), pp. 466-470
[17.]
J.M. Miguez, J. Recio, E. Sánchez-Barceló, M. Aldegunde.
Changes with age in daytime and nighttime contents of melatonin, indolamines, and catecholamines in the pineal gland: a comparative study in rat and Syrian hamster.
J Pineal Res, 25 (1998), pp. 106-115
[18.]
F. Waldhauser, M. Waldhauser.
Melatonin and ageing.
Melatonin-Clinical perspectives, pp. 174-189
[19.]
B. Selmaoui, Y. Touitou.
Age-related differences in serum melatonin and pineal NAT activity and in the response of rat pineal to a 50-HZ magnetic field.
Life Sci, 24 (1999), pp. 2291-2297
[20.]
H.A. Schmid, P.J. Requintina, G.F. Oxenkrug, W. Sturner.
Calcium, calcification, and melatonin biosynthesis in the human pineal gland: a post mortem study into age-related factors.
J Pineal Res, 16 (1994), pp. 178-183
[21.]
A. Lerchl.
Increased oxidation of pineal serotonin as a possible explanation for reduced melatonin synthesis in the aging Djungarian hamster (Phodopus sungorus).
Neurosci Lett, 176 (1994), pp. 25-28
[22.]
W. Humbert, P. Pevet.
The pineal gland of the aging rat: calcium localization and variation in the number of pinealocytes.
J Pineal Res, 18 (1995), pp. 32-40
[23.]
B. Halliwell, J.M.C. Gutteridge.
Free radicals in Biology and Medicine, 2nd Ed.
[24.]
B. Halliwell.
Reactive oxigen species and the central nervous system.
J Neurochem, 59 (1992), pp. 1609-1623
[25.]
D. Harman.
Free radical theory of aging: Increasing the functional life span.
Ann N Y Acad Sci, 717 (1994), pp. 1-15
[26.]
J. Miquel, A. Economos.
Favorable effects of the antioxidant sodium and magnesium thiazolidinecarboxylate on the viability and life-span of Drosophila and mice.
Exp Geront, 14 (1979), pp. 279-285
[27.]
M.A. Papolla, Y.J. Chyan, B. Poeggeler, P. Bozner, J. Ghiso, S.P. LeDoux, et al.
Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: prevention by melatonin.
J Pineal Res, 27 (1999), pp. 226-229
[28.]
R.M. Sainz, J.C. Mayo, H. Uria, M. Kotler, I. Antolin, C. Rodríguez, et al.
The pineal neurohormone melatonin prevents in vivo and in vitro apoptosis in thymocytes.
J Pineal Res, 19 (1995), pp. 178-188
[29.]
G.H. El-Sokkary, R.J. Reiter, D.X. Tan, S.J. Kim, J. Cabrera.
Inhibitore effect of melatonin on products of lipid peroxidation resulting from chronic ethanol administration.
Alcohol Alcohol, 34 (1999), pp. 842-850
[30.]
M. Turcan, A. Iacobovici, I. Haulica.
Melatonin and ubiquinone as endogenous antioxidant factors.
Rev Med Chir Soc Med Nat Iasi, 101 (1997), pp. 92-97
[31.]
E. Ozbek, Y. Turkoz, E. Sahna, F. Ozugurlu, B. Mizrak, M. Ozbek.
Melatonin administration prevents the nephrotoxicity induced by gentamicin.
BJU Int, 85 (2000), pp. 742-746
[32.]
M. Martín, M. Macías, G. Escames, R.J. Reiter, M.T. Agapito, G.G. Ortiz, et al.
Melatonin-induced increased activity for the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo.
J Pineal Res, 28 (2000), pp. 242-248
[33.]
A.A. Shifow, K.V. Kumar, M.U. Naidu, K.S. Ratnakar.
Melatonin, a pineal hormone with antioxidant property, protects against gentamicin-induced nephrotoxicity in rats.
Nephron, 85 (2000), pp. 167-174
[34.]
S. Kaneko, K. Okumura, Y. Numaguchi, H. Matsui, K. Murase, S. Mokuno, et al.
Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury.
Life Sci, 67 (2000), pp. 101-112
[35.]
M. Karbownik, D.X. Tan, R.J. Reiter.
Melatonin reduces the oxidation of nuclear DNA and membrane lipids induced by the carcinogen delta-aminolevulinic acid.
Int J Cancer, 88 (2000), pp. 7-11
[36.]
M. Karbownik, R.J. Reiter, J.J. García, D.X. Tan, W. Qi, L.C. Manchester.
Melatonin reduces rat hepatic macromolecular damage due to oxidative stress caused by delta-aminolevulinic acid.
Biochim Biophys Acta, 1523 (2000), pp. 140-146
[37.]
M. Karbownik, R.J. Reiter, J.J. García, D. Tan.
Melatonin reduces phenylhydrazine-induced oxidative damage to cellular membranes: evidence for the involvement of iron.
Int J Biochem Cell Biol, 32 (2000), pp. 1045-1054
[38.]
G.H. El-Sokkary, R.J. Reiter, S. Cuzzocrea, A.P. Caputi, A.F. Hassanein, D.X. Tan.
Role of melatonin in reduction of lipid peroxidation and peroxynitrite formation in non-septic shock induced by zymosan.
Shock, 12 (1999), pp. 402-408
[39.]
W.M. Behan, M. McDonald, L.G. Darlington, T.W. Stone.
Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl.
Br J Pharmacol, 128 (1999), pp. 1754-1760
[40.]
C. Hsu, B. Han, M. Liu, C. Yeh, J.E. Casida.
Phosphine-induced oxidative damage in rats: attenuation by melatonin.
Free Radic Biol Med, 28 (2000), pp. 636-642
[41.]
H. Ebelt, D. Peschke, H.J. Bromme, W. Morke, R. Blume, E. Peschke.
Influence of melatonin on free radical-induced changes in rat pancreatic betacells in vitro.
J Pineal Res, 28 (2000), pp. 65-72
[42.]
S. Benot, R. Goberna, R.J. Reiter, S. García-Maurino, C. Osuna, J.M. Guerrero.
Physiological levels of melatonin contribute to the antioxidant capacity of human serum.
J Pineal Res, 27 (1999), pp. 59-64
[43.]
B. Mess, C. Rúzsas.
Relationship between suprachiasmatic nuclei and rhytmic activity of the pineal gland.
Adv Pineal Res, pp. 1149-1158
[44.]
J. Vanecek, A. Paulik, H. Illnerova.
Hypothalamic melatonin receptor sites revealed by autoradiography.
Brain Res, 435 (1987), pp. 359-362
[45.]
M. Sharma, J. Palacios-Bois, G. Schwartz, H. Iskandar, M. Thakur, R. Quirion, et al.
Circadian rhythms of melatonin and cortisol in aging.
Biol Psychiatry, 25 (1989), pp. 305-319
[46.]
J. Mouret, J. Coindet, G. Chouvet.
Effect de la pinéalectomie sur les etas et rythmes de sommeil du rat male.
Brain Res, 81 (1974), pp. 97-105
[47.]
A.B. Lerner, R.J. Wurtman, H. Lieberman.
Melatonin secretion as a mediator of circadian variations in sleep and sleepness.
Int Psych, 5 (1978), pp. 3-26
[48.]
M. Mirmiran, P. Pevet.
Effects of melatonin and 5-metoxytryptamine on sleep-wake patterns in the male rat.
J Pineal Res, 3 (1986), pp. 135-141
[49.]
I. Haimov, M. Laudon, N. Zisapel, M. Souroujon, D. Nof, A. Shlitner, et al.
Impaired 6-sulfatoxymelatonin rhythms in the elderly: coincidence with sleep disorders.
Brith Med J, 309 (1994), pp. 167
[50.]
D. Garfinkel, M. Laudon, D. Nof, N. Zisapel.
Improvement of sleep quality in elderly people by controlled-release melatonin.
Lancet, 346 (1995), pp. 541-544
[51.]
K. Reid, C. Van den Heuvel, D. Dawson.
Day-time melatonin administration: effects on core temperature and sleep onset latency.
J Sleep Res, 5 (1996), pp. 150-154
[52.]
D. Kunz, F. Bes.
Melatonin as a therapy in REM sleep behavior disorder patients: An open-labeled pilot study on the possible influence of melatonin on REM-sleep regulation.
Movem Dis, 14 (1999), pp. 507-511
Copyright © 2001. Sociedad Española de Geriatría y Gerontología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos