[Algoul et al., 2011]S. Algoul, M. Alam, M. Hossain, M. Majumder.
Multi-objective optimal chemotherapy control model for cancer treatment.
Medical and Biological Engineering and Computing, 49 (2011), pp. 51-65
[Ang et al., 2005]K.H. Ang, G. Chong, Y. Li.
PID control system analysis, design, and technology.
Control Systems Technology, IEEE Transactions on, 13 (2005 july), pp. 559-576
[Åström and Hägglund, 2005]Åström, K.J., Hägglund, T., 2005. Advanced PID Control. ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC 27709.
[Åström et al., 1998]K. Åström, H. Panagopoulos, T. Hägglund.
Design of PI controllers based on non-convex optimization.
Automatica, 34 (1998), pp. 585-601
[Avigad et al., 2003]Avigad, G., Moshaiov, A., Brauner, N., (2003). june Towards a general tool for mechatronic design. In: Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on. Vol. 2. pp. 1035-1040 vol.2.
[Ayala and dos Santos Coelho, 2012]H.V.H. Ayala, L. dos Santos Coelho.
Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator.
Expert Systems with Applications, 39 (2012), pp. 8968-8974
[Behbahani and de Silva, 2008]S. Behbahani, C. de Silva.
System-based and concurrent design of a smart mechatronic system using the concept of mechatronic design quotient (MDQ). Mechatronics.
IEEE/ASME Transactions on, 13 (2008 feb.), pp. 14-21
[Beyer and Sendhoff, 2007]H.-G. Beyer, B. Sendhoff.
Robust optimization a comprehensive survey.
Computer Methods in Applied Mechanics and Engineering, 196 (2007), pp. 3190-3218
[Bingul and Karahan, 2011]Z. Bingul, O. Karahan.
A fuzzy logic controller tuned with PSO for 2 dof robot trajectory control.
Expert Systems with Applications, 38 (2011), pp. 1017-1031
[Biswas et al., 2009]A. Biswas, S. Das, A. Abraham, S. Dasgupta.
Design of fractionalorder PIλDμ controllers with an improved differential evolution.
Engineering Applications of Artificial Intelligence, 22 (2009), pp. 343-350
[Blasco et al., 2008]X. Blasco, J. Herrero, J. Sanchis, M. Martínez.
A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization.
Information Sciences, 178 (2008), pp. 3908-3924
[Bonissone et al., 2009]P. Bonissone, R. Subbu, J. Lizzi.
Multicriteria decision making (mcdm): a framework for research and applications.
Computational Intelligence Magazine, IEEE, 4 (2009 aug), pp. 48-61
[Caballero and Grossmann, 2011]J.A. Caballero, I.E. Grossmann.
Una revisión del estado del arte en optimización.
Revista Iberoamericana de Automática e Informática Industrial, 4 (2011), pp. 5-23
[Coello, 2000]Coello, C., 2000. Handling preferences in evolutionary multiobjective optimization: a survey. In: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 1. pp. 30-37 vol.1.
[Coello, 2002]C.A.C. Coello.
Theorical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art.
Computer methods in applied mechanics and engineering, 191 (2002), pp. 1245-1287
[Coello Coello, 2006]C. Coello Coello.
Evolutionary multi-objective optimization: A historical view of the field.
Computational Intelligence Magazine, IEEE, 1 (2006 feb.), pp. 28-36
[Coello, 2011]Coello, C., 2011. An introduction to multi-objective particle swarm optimizers. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (Eds.), Soft Computing in Industrial Applications. Vol. 96 of Advances in Intelligent and Soft Computing. Springer Berlin /Heidelberg, pp. 3-12, 10,1007/978 − 3 − 642 − 20505 − 71.
[Cordón, 2011]O. Cordón.
A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems.
International Journal of Approximate Reasoning, 52 (2011), pp. 894-913
[Corne and Knowles, 2007]Corne, D.W., Knowles, J.D., 2007. Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. GECCO ‘07. ACM, New York, NY, USA, pp. 773-780.
[Cruz et al., 2011]C. Cruz, J. González, D.A. Pelta.
Optimization in dynamic environments: a survey on problems, methods and measures.
Soft Computing, 15 (2011), pp. 1427-1448
[Das et al., 2011]S. Das, S. Maity, B.-Y. Qu, P. Suganthan.
Real-parameter evolutionary multimodal optimization a survey of the state-of-the-art.
Swarm and Evolutionary Computation, 1 (2011), pp. 71-88
[Das and Suganthan, 2010]S. Das, P.N. Suganthan.
Differential evolution: A survey of the state-of-the-art.
Evolutionary Computation, IEEE Transactions on, PP (2010), pp. 1-28
[Das and Suganthan, 2011]Das, S., Suganthan, P., 2011. Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Tech. rep., Jadavpur university and Nanyang Technological University.
[Deb, 2000]K. Deb.
An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186 (2000), pp. 311-338
[Deb et al., 2002]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan.
A fast and elitist multi-objective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6 (2002), pp. 124-141
[Dixon and Pike, 2006]R. Dixon, A. Pike.
ALSTOM benchmark challenge II on gasifier control.
Control Theory and Applications, IEE Proceedings -, 153 (2006 may), pp. 254-261
[Eiben and Schippers, 1998]A. Eiben, C. Schippers.
On evolutionary exploration and exploitation.
Fundamenta Informaticae, 35 (1998), pp. 35-50
[Elgammal and Sharaf, 2012]A. Elgammal, A. Sharaf.
Self-regulating particle swarm optimised controller for (photovoltaic-fuel cell) battery charging of hybrid electric vehicles.
Electrical Systems in Transportation, IET, 2 (2012 june), pp. 77-89
[Elsayed et al., 2011]S. Elsayed, R. Sarker, D. Essam.
june 2011. GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems. In: Evolutionary Computation (CEC).
IEEE Congress on., (2011), pp. 1034-1040
[Fazendeiro et al., 2007]P. Fazendeiro, J. de Oliveira, W. Pedrycz.
A multiobjective design of a patient and anaesthetist-friendly neuromuscular blockade controller.
Biomedical Engineering, IEEE Transactions on, 54 (2007 sept.), pp. 1667-1678
[Fazzolar et al., 2013]M. Fazzolar, R. Alcalá, Y. Nojima, H. Ishibuchi, F. Herrera.
A review of the application of multi-objective evolutionary fuzzy systems: Current status and further directions.
IEEE Transactions on Fuzzy Systems, 21 (2013 feb.), pp. 45-65
[Figueira et al., 2005]Figueira, J., Greco, S., Ehrgott, M., 2005. Multiple criteria decision analysis: State of the art surveys. Springer international series.
[Fleming and Purshouse, 2002]P. Fleming, R. Purshouse.
Evolutionary algorithms in control systems engineering: a survey.
Control Engineering Practice, 10 (2002), pp. 1223-1241
[Fonseca and Fleming, 1998a]C. Fonseca, P. Fleming.
Multiobjective optimization and multiple constraint handling with evolutionary algorithms-I: A unified formulation.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 28 (1998 jan), pp. 26-37
[Fonseca and Fleming, 1998b]C. Fonseca, P. Fleming.
Multiobjective optimization and multiple constraint handling with evolutionary algorithms-II: Application example. Systems, Man and Cybernetics, Part A: Systems and Humans.
IEEE Transactions on, 28 (1998 jan), pp. 38-47
[Gaing, 2004]Z.-L. Gaing.
A particle swarm optimization approach for optimum design of PID controller in AVR system.
Energy Conversion, IEEE Transactions on, 19 (2004 june), pp. 384-391
[Goldberg, 1989]Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.
[Hajiloo et al., 2012]A. Hajiloo, N. Nariman-zadeh, A. Moeini.
Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties.
Mechatronics, 22 (2012), pp. 788-801
[Hansen, 2006]N. Hansen.
The CMA evolution strategy: a comparing review.
Towards a new evo-lutionary computation. Advances on estimation of distribution algorithms., pp. 75-102
[Harik et al., 1999]G. Harik, F. Lobo, D. Goldberg.
The compact genetic algorithm. Evolutionary Computation.
IEEE Transactions on, 3 (1999 nov), pp. 287-297
[Herreros et al., 2002]A. Herreros, E. Baeyens, J.R. Perán.
Design of PID-type controllers using multiobjective genetic algorithms.
ISA Transactions, 41 (2002), pp. 457-472
[Holland, 1975]J.H. Holland.
Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence.
U. Michigan Press, (1975),
[Huang et al., 2008]L. Huang, N. Wang, J.-H. Zhao.
Multiobjective optimization for controller design.
Acta Automatica Sinica, 34 (2008), pp. 472-477
[Hung et al., 2008]M.-H. Hung, L.-S. Shu, S.-J. Ho, S.-F. Hwang, S.-Y. Ho.
A novel intelligent multiobjective simulated annealing algorithm for designing robust PID controllers. Systems, Man and Cybernetics, Part A: Systems and Humans.
IEEE Transactions on, 38 (2008 march), pp. 319-330
[Inselberg, 1985]A. Inselberg.
The plane with parallel coordinates.
The Visual Computer, 1 (1985), pp. 69-91
[Iruthayarajan and Baskar, 2009]M.W. Iruthayarajan, S. Baskar.
Evolutionary algorithms based design of multivariable PID controller.
Expert Systems with applications, 3 (2009), pp. 9159-9167
[Ishibuchi et al., 2008]H. Ishibuchi, N. Tsukamoto, Y. Nojima.
Evolutionary many-objective optimization: A short review. In: Evolutionary Computation, 2008. CEC.
(IEEE World Congress on Computational Intelligence) IEEE Congress on., (2008 june), pp. 2419-2426
[Jiachuan et al., 2005]W. Jiachuan, F. Zhun, J. Terpenny, E. Goodman.
Knowledge interaction with genetic programming in mechatronic systems design using bond graphs. Systems, Man, and Cybernetics, Part C: Applications and Reviews.
IEEE Transactions on, 35 (2005 may), pp. 172-182
[Juang et al., 2008]J.-G. Juang, M.-T. Huang, W.-K. Liu.
PID control using presearched genetic algorithms for a mimo system Systems, Man, and Cybernetics, Part C: Applications and Reviews.
IEEE Transactions on, 38 (2008 sept.), pp. 716-727
[Kamath et al., 2009]S. Kamath, V.I. George, S. Vidyasagar.
A comparative study of different types of controllers used for blood glucose regulation system.
The Canadian Journal of Chemical Engineering, 87 (2009), pp. 812-817
[Kaveh and Shtessel, 2008]P. Kaveh, Y.B. Shtessel.
Blood glucose regulation using higher-order sliding mode control.
International Journal of Robust and Nonlinear Control, 18 (2008), pp. 557-569
[Kennedy and Eberhart, 1995]J. Kennedy, R. Eberhart.
Particle swarm optimization. In: Neural Networks, 1995. Proceedings.
IEEE International Conference on., 4 (1995 nov/dec), pp. 1942-1948
[Kollat and Reed, 2007]J.B. Kollat, P. Reed.
A framework for visually interactive decision-making and design using evolutionary multi-objective optimization (VI- DEO).
Environmental Modelling & Software, 22 (2007), pp. 1691-1704
[Konak et al., 2006]Konak, A., Coit, D.W., Smith, A.E., 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91 (9), 992-1007, special Issue - Genetic Algorithms and Reliability.
[Koza et al., 2003]J. Koza, M. Keane, M. Streeter.
What's AI done for me lately genetic programming's human-competitive results.
Intelligent Systems, IEEE, 18 (2003 may-jun), pp. 25-31
[Koza and Poli, 2005]Koza, J., Poli, R., 2005. Genetic programming. In: Burke, E.K., Kendall, G. (Eds.), Search Methodologies. Springer US, pp. 127-164, 10.1007/0-387-28356-0 5.
[Lamanna et al., 2009]R. Lamanna, P. Vega, S. Revollar, H. Alvarez.
Diseño simultáneo de proceso y control de una torre sulfitadora de jugo de caña de azúcar.
Revista Iberoamericana de Automática e Informática Industrial, 6 (2009), pp. 32-43
[Lee and Chang, 2010]C.-H. Lee, F.-K. Chang.
Fractional-order PID controller optimization via improved electromagnetism-like algorithm.
Expert Systems with Applications, 37 (2010), pp. 8871-8878
[Li et al., 2006]Y. Li, K.H. Ang, G. Chong.
Pid control system analysis and design.
Control Systems, IEEE, 26 (2006 feb.), pp. 32-41
[Lin et al., 2011]C.-M. Lin, M.-C. Li, A.-B. Ting, M.-H. Lin.
A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm.
International Journal of Machine Learning and Cybernetics, 2 (2011), pp. 225-234
[Lotov and Miettinen, 2008]Lotov, A., Miettinen, K., 2008. Visualizing the Pareto frontier. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Multiobjective Optimization. Vol. 5252 of Lecture Notes in Computer Science. Springer Berlin /Heidelberg, pp. 213-243.
[Lozano et al., 2011]M. Lozano, D. Molina, F. Herrera.
Soft Computing: Special Issue on scalability of evolutionary algorithms and other metaheuristics for largescale continuous optimization problems.
[Luyben, 1986]W.L. Luyben.
Simple method for tuning SISO controllers in multivariable systems.
Industrial and Engineering Chemistry Process Design, 25 (1986), pp. 654-660
[Mallipeddi and Suganthan, 2009]Mallipeddi, R., Suganthan, P., 2009. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. Tech. rep., Nanyang Technological University, Singapore.
[Marler and Arora, 2004]R. Marler, J. Arora.
Survey of multi-objective optimization methods for engineering.
Structural and multidisciplinary optimization, 26 (2004), pp. 369-395
[Mattson and Messac, 2005]Mattson, C.A., Messac, A., 2005 Pareto frontier based concept selection under uncertainty, with visualization. Optimization and Engineering 6, 85-115, 10.1023/B:OPTE. 0000048538.35456.45.
[Menhas et al., 2012a]M.I. Menhas, M. Fei, L. Wang, L. Qian.
Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system.
Energy Conversion and Management, 54 (2012), pp. 67-80
[Menhas et al., 2012b]M.I. Menhas, L. Wang, M. Fei, H. Pan.
Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design.
Expert Systems with Applications, 39 (2012), pp. 4390-4401
[Messac, 1996]A. Messac.
Physical programming: effective optimization for computational design.
AIAA Journal, 34 (1996), pp. 149-158
[Mezura-Montes and Coello, 2011]E. Mezura-Montes, C.A.C. Coello.
Constraint-handling in nature-inspired numerical optimization: Past, present and future.
Swarm and Evolutionary Computation, 1 (2011 December), pp. 173-194
[Mezura-Montes et al., 2008]E. Mezura-Montes, M. Reyes-Sierra, C. Coello.
Multi-objective optimization using differential evolution: A survey of the state-of-the-art.
Advances in Differential Evolution, SCI143 (2008), pp. 173-196
[Miettinen, 1998]K.M. Miettinen.
Nonlinear multiobjective optimization.
Kluwer Academic Publishers, (1998),
[Mininno et al., 2011]E. Mininno, F. Neri, F. Cupertino, D. Naso.
Compact differential evolution Evolutionary Computation.
IEEE Transactions on, 15 (2011 feb.), pp. 32-54
[Oh et al., 2012]S.-K. Oh, W.-D. Kim, W. Pedrycz.
Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights.
Engineering Applications of Artificial Intelligence, 25 (2012), pp. 520-532
[Pan et al., 2011]I. Pan, S. Das, A. Gupta.
Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.
ISA Transactions, 50 (2011), pp. 28-36
[Podlubny, 1999]I. Podlubny.
Fractional-order systems and PIλDμ-controllers. Automatic Control.
IEEE Transactions on, 44 (1999 jan.), pp. 208-214
[Rao and Tiwari, 2009]J.S. Rao, R. Tiwari.
Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms.
Mechatronics, 19 (2009), pp. 945-964
[Reynoso-Meza et al., 2009]G. Reynoso-Meza, X. Blasco, J. Sanchis.
Diseño multiobjetivo de controladores PID para el benchmark de control 2008-2009.
Revista Iberoamericana de Automática e Informática Industrial, 6 (2009), pp. 93-103
[Reynoso-Meza et al., 2011]Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J., september 2011a. Handling control engineer preferences: Getting the most of PI controllers. In: Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference on. pp. 1-8.
[Reynoso-Meza et al., 2011a]Reynoso-Meza, G., Sanchis, J., Blasco, X., Herrero, J., june 2011b. Hybrid DE algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: Evolutionary Computation (CEC), 2011 IEEE Congress on. pp. 1551-1556.
[Reynoso-Meza et al., 2012a]Reynoso-Meza, G., Blasco, X., Sanchis, J., March 2012a. Optimización evolutiva multi-objetivo y selección multi-criterio para la ingeniería de control. In: X Simposio CEA de Ingeniería de Control.
[Reynoso-Meza et al., 2012b]Reynoso-Meza, G., García-Nieto, S., Sanchis, J., Blasco, X., 2012b. Controller tuning using multiobjective optimization algorithms: a global tuning framework. IEEE Transactions on Control Systems Article in press.
[Reynoso-Meza et al., 2012c]G. Reynoso-Meza, J. Sanchis, X. Blasco, J.M. Herrero.
Multiobjective evolutionary algortihms for multivariable PI controller tuning.
Expert Systems with Applications, 39 (2012), pp. 7895-7907
[Reynoso-Meza et al., 2013]G. Reynoso-Meza, X. Blasco, J. Sanchis, J.M. Herrero.
Comparison of design concepts in multi-criteria decision-making using level diagrams.
Information Sciences, 221 (2013), pp. 124-141
[Romero-Pérez et al., 2012]J.A. Romero-Pérez, O. Arrieta, F. Padula, G. Reynoso-Meza, S. Garcia-Nieto, P. Balaguer.
Estudio comparativo de algoritmos de auto-ajuste de controladores PID. resultados del benchmark 2010-2011 del grupo de ingeniería de control de cea.
Revista Iberoamericana de Automática e Informática Industrial, 9 (2012), pp. 182-193
[Roy et al., 2008]R. Roy, S. Hinduja, R. Teti.
Recent advances in engineering design optimisation: Challenges and future trends.
CIRP Annals - Manufacturing Technology, 57 (2008), pp. 697-715
[Sanchis et al., 2010]J. Sanchis, M.A. Martínez, X. Blasco, G. Reynoso-Meza.
Modelling preferences in multiobjective engineering design.
Engineering Applications of Artificial Intelligence, 23 (2010), pp. 1255-1264
[Santana-Quintero et al., 2010]L. Santana-Quintero, A. Montaño, C. Coello.
A review of techniques for handling expensive functions in evolutionary multi-objective optimization.
Computational Intelligence in Expensive Optimization Problems Vol. 2 of Adaptation Learning and Optimization, pp. 29-59
[Saridakis and Dentsoras, 2008]K. Saridakis, A. Dentsoras.
Soft computing in engineering design a review.
Advanced Engineering Informatics, 22 (2008), pp. 202-221
[Shi and Rasheed, 2010]L. Shi, K. Rasheed.
A survey of fitness approximation methods applied in evolutionary algorithms.
Computational Intelligence in Expensive Optimization Problems Vol. 2 of Adaptation Learning and Optimization, pp. 3-28
[Sidhartha Panda, 2011]Sidhartha Panda.
Multi-objective PID controller tuning for a facts-based damping stabilizer using non-dominated sorting genetic algorithm-II.
International Journal of Electrical Power and Energy Systems, 33 (2011), pp. 1296-1308
[Skogestad, 2003]S. Skogestad.
Simple analytic rules for model reduction and PID controller tuning.
Journal of Process Control, 13 (2003), pp. 291-309
[Stewart and Samad, 2011]G. Stewart, T. Samad.
Cross-application perspectives: Application and market requirements.
The Impact of Control Technology IEEE Control Systems Society, pp. 95-100
[Storn and Price, 1997]R. Storn, K. Price.
Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces.
Journal of Global Optimization, 11 (1997), pp. 341-359
[Tan et al., 2004]W. Tan, J. Liu, F. Fang, Y. Chen.
Tuning of PID controllers for boilerturbine units.
ISA Transactions, 43 (2004), pp. 571-583
[Tan et al., 2005]W. Tan, F. Lu, A. Loh, K. Tan.
Modeling and control of a pilot pH plant using genetic algorithm.
Engineering Applications of Artificial Intelligence, 18 (2005), pp. 485-494
[Tavakoli et al., 2007]S. Tavakoli, I. Griffin, P.J. Fleming.
Multi-objective optimization approach to the PI tuning problem.
In: Proceedings of the IEEE congress on evolutionary computation (CEC2007)., (2007 September), pp. 3165-3171
[Vilanova and Alfaro, 2011]R. Vilanova, V.M. Alfaro.
Control pid robusto: una visión panorámica.
Revista Iberoamericana de Automática e Informática Industrial, 8 (2011), pp. 141-158
[Xue et al., 2010]Y. Xue, D. Li, F. Gao.
Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem.
Control Engineering Practice, 18 (2010), pp. 67-76
[Zamani et al., 2009]M. Zamani, M. Karimi-Ghartemani, N. Sadati, M. Parniani.
Design of a fractional order PID controller for an AVR using particle swarm optimization.
Control Engineering Practice, 17 (2009), pp. 1380-1387
[Zhang et al., 2009]J. Zhang, J. Zhuang, H. Du, S. Wang.
Self-organizing genetic algorithm based tuning of PID controllers.
Information Sciences, 179 (2009), pp. 1007-1018
[Zhang and Li, 2007]Q. Zhang, H. Li.
MOEA/D: A multiobjective evolutionary algorithm based on decomposition. Evolutionary Computation.
IEEE Transactions on, 11 (2007 december), pp. 712-731
[Zhao et al., 2011]S.-Z. Zhao, M.W. Iruthayarajan, S. Baskar, P. Suganthan.
Multiobjective robust PID controller tuning using two lbests multi-objective particle swarm optimization.
Information Sciences, 181 (2011), pp. 3323-3335
[Zhou et al., 2011]A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P.N. Suganthan, Q. Zhang.
Multiobjective evolutionary algorithms: A survey of the state of the art.
Swarm and Evolutionary Computation, 1 (2011), pp. 32-49