Este trabajo presenta el análisis cinemático de un manipulador reconfigurable integrado por dos sub-manipuladores paralelos que comparten una plataforma móvil. Una solución en forma semi-cerrada para el análisis directo de posición del robot es obtenida tomando ventaja de la geometría no plana de la plataforma móvil, mientras que los análisis de velocidad, aceleración y singularidades son desarrollados por medio de teoría de tornillos. Finalmente se propone una aproximación basada en el índice de manipulabilidad de la matriz jacobiana para determinar la configuración geométrica que optimiza el desempeño del manipulador dada una determinada postura de la plataforma móvil.
This work presents the kinematic analysis of a reconfigurable manipulator composed of two parallel sub-manipulators that share a common moving platform. A semi-closed form solution is easily obtained to solve the forward displacement analysis of the robot taking advantage of the non-planar geometry of the moving platform, while the velocity, acceleration and singularity analyses are developed by resorting to screw theory. Finally a very practical approach based on the manipulability index of the jacobian matrix of the robot is proposed in order to determine the geometric configuration that optimizes the performance of the manipulator given a pose of the moving platform.
Angeles, 2007, Balmaceda-Santamaría et al., 2014, Bande et al., 2005, Brisan, 2007, Bonev et al., 2003, Carbonari et al., 2014, Chen, Ch-T. 2012, Dasgupta and Mruthyunjaya, 1998, du Plessis and Snyman, 2006, Gallardo-Alvarado et al., 2006, Gallardo-Alvarado et al., 2008, Gan et al., 2009, Gosselin and Angeles, 1990, Husty, 1996, Ji and Song, 1998, Jiang and Gosselin, 2009, Kong, 2014, Kumar et al., 2009, Landeira Freire et al., 2015, Lee and Shim, 2003, Mayer and Gosselin, 2000, Merlet, 2004, Moreno et al., 2012, Mu and Kazerounian, 2002, Omran et al., 2008, Parikh and Lam, 2005, Plitea et al., 2013, Raghavan, 1993, Rico and Duffy, 2000, Rolland, 2005, Rolland and Chandra, 2010, Sen et al., 2003, Shen and Wu, 2004, Simaan and Shoham, 2003, Sung-Gaun and Ryu, 2003, Ueberle et al., 2004, Voglewede and Ebert-Uphoff, 2004, Yu et al., 2012, Xi et al., 2011, Yang et al., 2001, Ye et al., 2014, Yurt et al., 2007 and Zhang and Shi, 2012.