covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Bases para el desarrollo de Micromáquinas Herramienta Paralelas
Información de la revista
Vol. 11. Núm. 2.
Páginas 212-223 (abril - julio 2014)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3544
Vol. 11. Núm. 2.
Páginas 212-223 (abril - julio 2014)
Open Access
Bases para el desarrollo de Micromáquinas Herramienta Paralelas
Basis for the development of micro-parallel kinematic machines
Visitas
3544
Ricardo Yáñez-Valdez
Autor para correspondencia
ryv@azc.uam.mx

Autor para correspondencia.
Departamento de Energía de la división de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana Av. San Pablo No. 180 Col. Reynosa Tamaulipas, 02200 Distrito Federal, México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El presente trabajo pretende sentar las bases del desarrollo de micromáquinas herramienta paralelas. Se plantean condiciones básicas y se propone un proceso de selección de configuraciones paralelas con miras a su implementación como micromáquinas herramienta. Con base en requerimientos e índices de desempeño se seleccionó una configuración paralela con todas las cualidades solicitadas para desempeñar tareas de micromecanizado. Se aborda con mayor detalle el proceso de selección para un caso de estudio donde 3 ejes traslacionales de movimiento son requeridos. Con base en el resultado del proceso de selección y en especificaciones de diseño, se construyó y se evaluó un prototipo de micromáquina herramienta paralela. El resultado de la investigación realizada muestra que es factible realizar tareas de micromecanizado con el prototipo de micromáquina herramienta paralela.

Palabras clave:
Desacoplamiento cinemático
Espacio de trabajo
Índices de desempeño
Isotropía de fuerzas
Mecanismo paralelo
Micromáquina herramienta
Proceso de selección
Síntesis de tipo
Abstract

This work aims to establish the development basis of parallel configurations based micromachine tools. Basic conditions are identified from typical micromachine tools in order to propose a selection process of parallel configurations with the aim to develop micro-parallel kinematic machines. Based on requirements and performance indices a 3DOF parallel configuration is selected. The selection process is applied for a case of study where 3 axes of movement are required. Based on previous results and specifications, a prototype of micro-parallel kinematic machine is built and evaluated. Through test analysis, the micro-parallel kinematic machine is proved to be feasible and applicable for micro-manufacturing.

Keywords:
Decoupled motion
Force isotropy
Micromachine tool
Microparallel kinematic machine
Performance indices
Reachable workspace
Selection method
Type synthesis
Referencias
[Angeles, 2004]
Angeles, J. 2004. The qualitative synthesis of parallel manipulators. Mechanical Design 126(4) pp. 617-624.
[Aracil et al., 2006]
Aracil, R., Saltarén, R., Sabater, J. Reinoso, O. 2006. Robots paralelos: máquinas con un pasado para una robótica del futuro. Revista Iberoamericana de Automática e Informática Industrial 3(1) pp. 26-28.
[Arakelian et al., 2005]
Arakelian, V., Briot, S., Guegan, S., Le Flecher, J. 2005. Design and prototyping of new 4, 5 and 6 degrees of freedom parallel manipulators based on the copying properties of the pantograph linkage. Proceedings of 36th International Symposium on Robotics ISR, Tokyo, Japan.
[Ataka, 1999]
Ataka, T. 1999. The experimental microfactory system in japanese national R&D project. R&D Department, Scientific Instruments Division, Seiko Instruments Inc. 36-1.
[Beltrami et al., 2004]
Beltrami, I., Joseph, C., Clavel, R., Bacher, J.P., Bottinelli, S. 2004. Micro- and nanoelectric-discharge machining. Materials Processing Technology, 149(1-3) pp. 263-265.
[Clavel, 1988]
Clavel, R. 1988. DELTA, a fast robot with parallel geometry. International Symposium on Industrial Robots. 12-17 Lausanne, pp. 91-100.
[Chablat, 2003]
Chablat, D., Wenger, Ph. 2003. Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation 19(3) pp. 403-410.
[Dario et al., 2002]
Dario, P., Menciassi, A., Stefanini, C., Accoto, D. 2002. Miniaturization of biomedical micromachines. 2nd. Annual International IEEE- EMBS Special Topic Conference on Micrtechnologies in Medicine & Biology. IEEE. Madison, Wisconsin USA, pp. 291-296.
[Dario et al., 1992]
Dario, P., Valleggi, R., Carrozza, M.C., Montesit M. C., and Coccot M. 1992. Microactuators for microrobots: A critical survey. Micromechanic and Microengineering 2, pp. 141-157.
[Denton, 2009]
Denton, M. 2009. Hexapod CNC router strolls into action. Micro manufacturing, http://www.micromanufacturing.com/showthread.php? p=734. accessed: Octubre 2009.
[Detter and Popovic, 2000]
Detter, H., Popovic G. 2000. Industrial demands on micromechanical products. IEEE Proc. 22nd International Conference on Microelectronics, NIS, Serbia, 14-17 May, pp. 61-67.
[Dhanorker and Özel, 2008]
Dhanorker, A., Özel, T. 2008. Meso-micro scale milling for micro manufacturing. Mechatronics and Manufacturing Systems 1(1) pp. 23-42.
[Dornfeld et al., 2006]
Dornfeld, D., Min, S., Takeuchi, Y. 2006. Recent advances in mechanical micromachining. Manufacturing Technology 55(2) pp. 745-768.
[Ehmann et al., 2008]
Ehmann, K.F., DeVor, R.E., Kapoor, S.G., Cao, J. 2008. Design and analysis of micro/meso-scale machine tools. Wang, L. and Xi, J. (Eds.) Smart Devices and Machines for Advanced Manufacturing. Springer, pp. 283-318.
[Frazier, 1995]
Frazier, A.B. 1995. The miniaturization technologies: Past, present, and future. IEEE Transactions on Industrial Electronics 42(5) pp. 423-430.
[Fujita et al., 2001]
Fujita, H., Toshiyoshi, H., Hashiguchi, G., Wada, Yasou. 2001. Micromachined tools for nano technology. RIKEN Review. Focused on Science and Technology in Micro/Nano Scale (36) pp. 12-15.
[Gogu, 2004]
Gogu, G. 2004. Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations. European Journal of Mechanics A/Solids 23, pp. 1021-1039.
[Gogu, 2008]
Gogu, G. 2008. Structural synthesis of Parallel Robots, Part 1: Methodology. Springer, Solid Mechanics and its applications Vol. 149. pp. 275.
[Gosselin et al., 2007]
Gosselin, C., Masouleh, M., Duchaine, V., Richard, P-L., Foucault, S., Kong, X. 2007. Parallel mechanisms of the multipteron family: Kinematic Architectures and Benchmarking. International Conference on Robotics and Automation. IEEE. Roma, Italy, 10-14 April, pp. 555-560.
[Gosselin and Kong, 2004]
Gosselin, C.M., Kong, X. 2004. Cartesian parallel manipulators, US Patent No. 6,729,202 B2.
[Heikkilä et al., 2007]
Heikkilä, H.R., Karjalainen, I.T., Uusitalo, J.J., Vuola, A.S., Tuokko, R. O. 2007. Possibilities of a microfactory in the assembly of small part and products-first result of the M4-project. Proceedings of the International Symposium on Assembly and Manufacturing, Ann Arbor, Michigan, USA.
[Jang et al., 2008]
Jang, S.H., Jung, Y.M., Hwang, H.Y., Choi, Y.H., Park, J.K. 2008. Development of a reconfigurable micro machine tool for microfactory. International Conference on Smart Manufacturing Application. KINTEX. Gyeonggi-do, Korea, pp. 190-195.
[Jin et al., 2006]
Jin, Y., Chen, I.M., Yang, G. 2006. Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Transactions on Robotics 22(3) pp. 545-551.
[Kang et al., 2006]
Kang, D.S., Seo, T.W., Yoon, Y.H., Shin, B.S., Liu, X-J., Kim, J. 2006 A micro positioning parallel mechanism platform with 100 degree tilting capability. Manufacturing Technology 55(1) pp. 377-380.
[Kawahara et al., 1997]
Kawahara, N., Suto, T., Hirano, T., Ishikawa, Y., Kitahara, T., Ooyama, N., Ataka T. 1997. Microfactories; new applications for micromachine technology to the manufacture of small products. Microsystem Technologies 3(2) pp. 37-41.
[Kong and Gosselin, 2002]
Kong, X., Gosselin, C.M. 2002. Type synthesis of linear translational parallel manipulators. J. Lenarcic, F. Thomas (Eds.), Advances in Robot Kinematics: Theory and Applications, Kluwer Academic Publishers, pp. 453-462.
[Kussul et al., 2006]
Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G. 2006. Scaling down of microequipment parameters. Precision Engineering 30(2) pp. 211-222.
[Kussul et al., 2002]
Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G., Kasatkina, I. 2002. Development of micromachine tool prototypes for microfactories. Micromechanics and Microengineering 12(6) pp. 795-812.
[Kussul et al., 1996]
Kussul, E., Rachkovskij, D., Baidyk, T., Talayev, S. 1996. Micromechanical engineering: a basis for the low-cost manufacturing of mechanical microdevices using microequipment. Micromechanical and Microengineering 6(4) pp. 410-425.
[Kussul et al., 2004]
Kussul, E., Ruiz-Huerta, L., Caballero-Ruiz, A., Kasatkin, A., Kasatkiana, L., Baidyk, T., Velasco, G. 2004. CNC machine tools for low cost micro devices manufacturing. Journal of applied research and technology 2(1) pp. 76-91.
[Li et al., 2008]
Li, H., Lai, X., Li, C., Lin, Z., Miao, J., Ni, J. 2008. Development of meso-scale milling machine tool and its performance analysis. Frontiers of Mechanical Engineering in China 3(1) pp. 59-65.
[Li et al., 2007]
Li, X., Wang, J., Li, W. 2007. Current state and prospect of micro- machining. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, pp. 1414-1419.
[Li and Bone, 2001]
Li, Y., Bone, G. 2001. Are parallel manipulators more energy efficient? Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation, Alberta, Canada, pp. 41-46.
[Liang et al., 2006]
Liang, Y., Zhaol, Y., Bai Q., Wang, S., Wang, B., Chen, M., Dou, J. 2006. Study on micromachine tools in fabrication of microparts. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, pp. 856-859.
[Mekid et al., 2004]
Mekid, S., Gordon, A., Nicholson, P. 2004. Challenges and rationale in the design of miniaturised machine tool. Proceedings of the 34th International MATADOR Conference at UMIST, Springer, pp. 456-471.
[Merlet, 2006]
Merlet, J.P. 2006. Parallel Robots. Springer. ISBN-10: 1-4020-4132-2.
[Moreno et al., 2012]
Moreno, H., Saltaren, R., Carrera, I., Puglisi, L., Aracil R. 2012. Índices de desempeño de robots manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática industrial 9(2) pp. 111-122.
[Okazaki and Kitahara, 2000]
Okazaki, Y., Kitahara, T. 2000. Micro-lathe equipped with closed-loop numerical control. 2nd International Workshop on Microfactories. Fribourg Switzerland, Oct 9-10, pp. 87-90.
[Okazaki et al., 2002]
Okazaki, Y., Mishima, N, and Ashida, K. 2002. Microfactory and micro machine tools. First Kore-Japan Conference on Positioning Technology, pp. 1-6.
[Perroud et al., 2003]
Perroud, S., Codourey, A., Mussard Y. 2003. A miniature robot for the microfactory. Switzerland, CSEM Centre Suisse d’Electronique et de Microtechnique.
[PI, 2013]
PI. 2013. Physik Instrumente. Accessed: April 2013, www.physikinstrumente.com/.
[Press et al., 2002]
Press, W., Teukolsky, S., Vetterling, W., Flannery, B. 2002. Numerical recipes in C, The art of scientific computing. Cambridge University Press.
[Rehsteiner et al., 1999]
Rehsteiner, F., Neugebauer, R., Spiewak, S., Wieland, F. 1999. Putting parallel kinematics machines (PKM) to productive work. Manufacturing Technology 48(1) pp. 345-350.
[Ruiz, 2000]
Ruiz, L. 2000. Desarrollo de microtecnología mecánica para aplicaciones de instrumentación. Memoria SOMI XV Congreso Nacional de Instrumentación. Guadalajara, Jalisco México.
[Singh, 2008]
Singh, K. 2008. Expect changes when entering ‘micro’ world. Micro Manufacturing 1(1).
[Slocum, 1992]
Slocum, A.H. 1992. Precision machine design: Macromachine design philosophy and its applicability to the design of micromachines. Proceedings of Micro Electro Mechanical Systems, MEMS ‘92. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot., Travemunde, Germany, pp. 37-42.
[Sparacino and Hervé, 1993]
Sparacino, F., Hervé, J. 1993. Synthesis of parallel manipulators using lie-groups Y-star and H-robot. International Workshop on Advanced Robotics, Tsukuba, Japan, November 8-9, pp. 75-80.
[Staffetti et al., 2002]
Staffetti, E., Bruyninckx, H., De Schutter, J. 2002. On the invariance of manipulability indices. J. Lenarcic, Thomas, F. (Eds.) Advances in Robot Kinematics, Kluwer Academic Publishers, pp. 57-66.
[Tanaka, 2001]
Tanaka, M. 2001. Development of desktop machining microfactory. RIKEN review: Focused on Advances on Micro Mechanical Fabrication Techniques, No. 34, pp. 46-49.
[Tlusty et al., 1999]
Tlusty, J., Ziegert, J., Ridgeway, S. 1999. Fundamental comparison of the use of serial and parallel kinematics for machines tools. Manufacturing Technology 48(1) pp. 351-356.
[Tsai, 1997]
Tsai, L.W. 1997. Multi-degree-of-freedom mechanisms for machine tools and the like, US Patent No. 5,656,905.
[Tsai, 1998]
Tsai, L.W. 1998. Systematic enumeration of parallel manipulator. Technical Research Report. T. R. 98-33, pp. 1-11.
[Wang et al., 1997]
Wang, Y., Zou, H., Zhao, Y., Li, M. 1997. Design and kinematics of a parallel manipulator for manufacturing. Manufacturing Technology 46(1) pp. 297-300.
[Wu et al., 2007]
Wu, Z., Rizk, R., Fauroux, J.C., Gogu, G. 2007. Numerical simulation of parallel robots with decoupled motions and complex structure in a modular design approach. Tichkiewitch, S., Tollenaere, M., Ray, P., (Eds.) Advances in Integrated Design and Manufacturing in Mechanical Engineering II, Springer. Part 3 pp. 129-144.
[Yangmin and Qingsong, 2006]
Yangmin, L., Qingsong, X. 2006. A new approach to the architecture optimization of a general 3-puu translational parallel manipulator. Intelligent & Robotic Systems 46(1) pp. 59-72.
[Yoshikawa, 1985]
Yoshikawa, T. 1985. Manipulability of robotic mechanism. The International Journal of Robotic Research 4(2) pp. 3-9.
[Youssef and El-Hofi, 2008]
Youssef, H., El-Hofi, H. 2008. Machining technology. Machine tools and operations. CRC Press.
[Zanganeh and Angeles, 1997]
Zanganeh, K., Angeles, J. 1997. Kinematic isotropy and the optimum design of parallel manipulators. Journal of Robotics Research 16(2) pp. 185-197.
[Zhang, 2009]
Zhang, D. 2009. Parallel robotic machine tools, Springer. ISBN: 978-1-4419-1116-2.
[Zhang et al., 2004]
Zhang, D., Xi, F., Mechefske, C.M., Lang, S. 2004. Analysis of parallel kinematic machine with kinetostatic modelling method. Robotics and Computer-Integrated Manufacturing 20(2) pp. 151-165.
Copyright © 2013. EA
Opciones de artículo