[Albiol et al., 2012]Albiol, A., Albiol, A., Oliver, J., ., J.M., September 2012. Who is who at dif- ferent cameras: people re-identification using depth cameras. IET Computer Vision 6 (5), 378-387.
[Albiol et al., 2001]Albiol, A., Mora, I., Naranjo, V., December 2001. Real-time high density peo- ple counter using morphological tools. IEEE Transactions on Intelligent Transportation Systems 2 (4), 204-218.
[Albiol and Silla, 2010]Albiol, A., Silla, J., 2010. Statistical video analysis for crowds counting. En: Proceedings of the 16th IEEE international conference on Image Processing (ICIP). pp. 2569-2572.
[Andriluka et al., 2008]Andriluka, M., Roth, S., Schiele, B., 2008. People-tracking-by-detection and people-detection-by-tracking. En: IEEE Conf. on Computer Vision and Pat- tern Recognition.
[Antic et al., 2010]Antic, B., Letic, D., D. Culibrk, V.C., 2010. K-means based segmentation for real-time zenithal people counting. En: Proceedings of the 16th IEEE Inter- national Conference on the Image Processing (ICIP). pp. 2565-2568.
[Barandiaran et al., 2008]Barandiaran, J., Murguia, B., Boto, F., 2008. Real-time people counting using multiple lines. En: Ninth International Workshop on Image Analysis for Multimedia Interactive Services. pp. 159-162.
[Barbosa et al., 2012]Barbosa, B.I., Cristani, M., Bue, A.D., Bazzani, L., Murino, V., 2012. Re- identification with RGB-D sensors. En: 1st International Workshop on Re- Identification.
[Bellotto and Hu, 2009]Bellotto, N., Hu, H., Feb- 2009. Multisensor-based human detection and trac- king for mobile service robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39 (1), 167-181.
[Beymer, 2000]Beymer, D., 2000. Person counting using stereo. En: Workshop on Human Mo- tion. pp. 127-133.
[Blanco et al., 2003]Blanco, J., Burgard, W., Sanz, R., Fernandez, J., 2003. Fast face detection for mobile robots by integrating laser range data with vision. En: Proc. of the International Conference on Advanced Robotics (ICAR). pp. 953-958.
[Bozzoli et al., 2007]Bozzoli, M., Cinque, L., Sangineto, E., 2007. A statistical method for people counting in crowded environments. En: 14th International Conference on Image Analysis and Processing.
[Brutzer et al., 2011]Brutzer, S., Hoferlin, B., Heidemann, G., 2011. Evaluation of background sub- traction techniques for video surveillance. En: IEEE Conference on Compu- ter Vision and Pattern Recognition (CVPR). pp. 1937-1944.
[Camplani et al., 2014]Camplani, M., del Blanco, C.R., Salgado, L., Jaureguizar, F., Garcí, N., Ja- nuary 2014. Advanced background modeling with RGB-D sensors through classifiers combination and inter-frame foreground prediction. Machine Vi- sion and Applications 25 (1), 122-136.
[Chan et al., 2008]Chan, A.B., Liang, Z.-S. J., Vasconcelos, N., 2008. Privacy preserving crowd monitoring: Counting people without people models or tracking. En: Com- puter Vision and Pattern Recognition. pp. 1-7.
[Chan and Vasconcelos, 2012]Chan, A.B., Vasconcelos, N., April 2012. Counting people with low-level fea- tures and bayesian regression. IEEE TRANSACTIONS ON IMAGE PRO- CESSING 21 (4), 2160-2177.
[Cohen et al., 2000]Cohen, I., Garg, A., Huang, T., 2000. Vision-based overhead view person re- cognition. En: 15th International Conference on Pattern Recognition.
[Cui et al., 2007]Cui, J., Zha, H., Zhao, H., Shibasaki, R., 2007. Laser-based detection and trac- king of multiple people in crowds. Computer Vision and Image Understan- ding 106, 300-312.
[Cui et al., 2008]Cui, J., Zha, H., Zhao, H., Shibasaki, R., 2008. Multi-modal tracking of people using laser scanners and video camera. Image and Vision Computing 26 (2), 240-252.
[Englebienne and Krose, 2010]Englebienne, G., Krose., B., 2010. Fast bayesian people detection. En: 22nd Benelux Conference on Artificial intelligence.
[Englebienne et al., 2009]Englebienne, G., van Oosterhout, T., Krose, B., 2009. Tracking in sparse multi- camera setups using stereo vision. En: Third ACM/IEEE International Con- ference on Distributed Smart Cameras (ICDSC).
[Fanelli et al., 2011a]Fanelli, G., Gall, J., Gool, L.V., 2011a. Real time head pose estimation with random regression forests. En: Computer Vision and Patter Recognition (CVPR).
[Fanelli et al., 2011b]Fanelli, G., Weise, T., Gall, J., Gool, L.V., 2011b. Real time head pose esti- mation from consumer depth cameras. En: 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM).
[Fod et al., 2002]Fod, A., Howard, A., Mataric, M.J., May 2002. Laser-based people tracking. En: IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., pp. 3024-3029.
[Garc¿ıa et al., 2012]García, J., Gardel, A., Bravo, I., Lázaro, J.L., Martínez, M., Rodríguez, D., Oct-Diciembre 2012. Detección y seguimiento de personas basado en estereovisión y filtro de kalman. Revista Iberoamericana de Automática e Informática Industrial 9 (4).
[Gollan et al., 2011]Gollan, B., Wally, B., Ferscha, A., 2011. Id management strategies for inter- active systems in multi-camera scenarios. En: 4th Conference on Context Awareness for Proactive Systems (CAPS). Budapest.
[Han et al., 2004]Han, B., Comaniciu, D., Zhu, Y., Davis, L., 2004. Incremental density appro- ximation and kernel-based bayesian filtering for object tracking. En: IEEE Conf. on Computer Vision and Pattern Recognition. pp. 638-644.
[Harville, 2004]Harville, M., 2004. Stereo person tracking with adaptive plan-view templates of height and occupancy statistics. Image and Vision Computing 22 (2), 127-142.
[Heikkila and Silven, 1999]Heikkila, J., Silven, O., June 1999. A real-time system for monitoring of cyclists and pedestrians. En: IEEE Workshop on Visual Surveillance. Fort Collins, Colorado, pp. 82-90.
[Hernández et al., 2011]Hernández, D., Castrillón, M., Lorenzo, J., 2011. People counting with re- identification using depth cameras. En: 4th International Conference on Ima- ging for Crime Detection and Prevention (ICDP).
[Hernández-Sosa et al., 2011]Hernández-Sosa, D., Castrillón-Santana, M., Lorenzo-Navarro, J., 2011. Multi- sensor people counting. En: IbPRIA. pp. 321-328.
[Hou and Pang, 2011]Hou, Y., Pang, G., 2011. People counting and human detection in a challen- ging situation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 41, 24-33.
[Katabira et al., 2004]Katabira, K., Nakamura, K., Zhao, H., Shibasaki, R., November 22-26 2004. A method for counting pedestrians using a laser range scanner. En: 25th Asian Conference on Remote Sensing (ACRS 2004). Thailand.
[Kim et al., 2002]Kim, J.W., Choi, K.S., Park, W.-S., Lee, J.-Y., Ko, S.J., September 2002. Robust real-time people tracking system for security. Intelligent Building Society (IBS) 2 (3), 184-190.
[Lee et al., 2008]Lee, G.-G., ki Kim, H., Yoon, J.-Y., Kim, J.-J., Kim, W.-Y., 2008. Pedestrian counting using an IR line laser. En: International Conference on Convergen- ce and Hybrid Information Technology 2008.
[Leibe et al., 2008]Leibe, B., Schindler, K., Cornelis, N., Gool:, L.J. V., 2008. Coupled object de- tection and tracking from static cameras and moving vehicles. IEEE Trans attern Anal. Mach. Intell. 30 (10), 1683-1698.
[Lorenzo-Navarro et al., 2013]Lorenzo-Navarro, J., Castrillón-Santana, M., Hernández-Sosa, D., 2013. On the use of simple geometric descriptors provided by RGB-D sensors for re- identification. Sensors 13 (7), 8222-8238.
[Marcos et al., 2013]Marcos, A., Pizarro, D., Marrón, M., Mazo, M., Abr 2013. Captura de mo- vimiento y reconocimiento de actividades para múltiples personas mediante un enfoque bayesiano. Revista Iberoamericana de Automática e Informática Industrial 10 (2).
[Mathews and Poigné, 2009]Mathews, E., Poigné, A., 2009. Evaluation of a “art”destrian counting sys- tem based on echo state networks. EURASIP Journal on Embedded Systems 2009, 1-9 OI: http://dx.doi.org/10.1155/2009/352172.
[Moore et al., 2011]Moore, B.E., Ali, S., Mehran, R., Shah, M., December 2011. Visual crowd surveillance through a hydrodynamics lens. Communications of the ACM 54 (12), 64-73.
[Nakamura et al., 2006]Nakamura, K., Zhao, H., Shibasaki, R., K.S., Ohga, T., Suzukawa, N., 2006. Tracking pedestrians using multiple single-row laser range scanners and its reliability evaluation,. Systems and Computers in Japan 37, 1-11.
[Oliver et al., 2012]Oliver, J., Albiol, A., Albiol, A., 2012. 3d descriptor for people re-identification n:, En: 21st International Conference on Pattern Recognition (ICPR).
[Piccardi, 2004]Piccardi, M., 2004. Background subtraction techniques: a review. En: IEEE International Conference on Systems, Man and Cybernetics. pp. 3099-3104. Qiuyu, Z., Li;, T., Yiping, J., Wei-jun, D.,;1; 2010. A novel approach of counting people based on stereovision and dsp. En: The 2nd International Conference n Computer and Automation Engineering;1; (ICCAE).
[Satta et al., 2013]Satta, R., Pala, F., Fumera, G., Roli, F., 2013. Real-time appearance-based person re-identification over multiple kinect cameras. En: 8th International Conference on Computer Vision Theory and Applications (VISAPP). Bar- celona, Spain.
[Scheutz et al., 2004]Scheutz, M., McRaven, J., Cserey, G., 2004. Fast, reliable, adaptive, bimodal people tracking for indoor environments. En: Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. (IROS 2004). Vol. 2. pp. 1347-1352.
[Septian and Tao, 2006]Septian, H., Tao, J., Tan, Y.-P., 5-8 Dec. 2006 2006. People counting by video segmentation and tracking. En: 9th International Conference on Control, Au- tomation, Robotics and Vision, 2006. ICARCV ‘06. Singapore, pp. 1-4.
[Shotton et al., 2011]Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipma, A., Blake, A., June 2011. Real-time human pose recognition in parts from a single depth image. En: Computer Vision and Pattern Recognition.
[Spinello and Arras, 2011]Spinello, L., Arras, K.O., 2011. People detection in RGB-D data. En: Proc. of The International Conference on Intelligent Robots and Systems (IROS).
[Stauffer and Grimson, 1999]Stauffer, Grimson, 1999. Adaptive background mixture models for real-time tracking. En: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 246-252.
[van Oosterhout et al., 2011]van Oosterhout, T., Bakkes, S., Kröse, B., 2011. Head detection in stereo da- ta for people counting and segmentation. En: International Conference on Computer Vision Theory and Applications (VISAPP). pp. 620-625.
[Velipasalar et al., 2006]Velipasalar, S., li Tian, Y., Hampapur, A., July 2006. Automatic counting of interacting people by using a single uncalibrated camera. En: IEEE Interna- tional Conference on Multimedia and Expo. Toronto, ON, Canada.
[Xia et al., 2011]Xia, L., Chen, C.-C., Aggarwal, J.K., June 2011. Human detection using depth information by kinect. En: International Workshop on Human Activity Un- derstanding from 3D Data in conjunction with CVPR (HAU3D). Colorado Springs, CO.
[Yahiaoui et al., 2010]Yahiaoui, T., Khoudour, L., Meurie, C., July 2010. Real-time passenger coun- ting in buses using dense stereovision. J. Electron. Imaging 20.
[Yu et al., 2007]Yu, H., Liu, J., Liu, J., 2007. 3d feature extraction of head based on target region matching. En: Proceedings of the International Conference on Computatio- nal Intelligence and Security. pp. 366-370.
[Zeng and Ma, 2010]Zeng, C., Ma, H., 2010. Robust head-shoulder detection by pca-based multile- vel HOG-LBP detector for people counting. En: 20th International Confe- rence on Pattern Recognition (ICPR). Istambul, pp. 2069-2072.
[Zhan et al., 2008]Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.-Q., 2008. Crowd analysis: a survey. Machine Vision and Applications 19, 345-357.
[Zhao et al., 2009]Zhao, X., Dellandréa, E., Chen, L., 2009. A people counting system based on face detection and tracking in a video. En: Advanced Video and Signal Ba- sed Surveillance.
[Zivkovic and der Heijden, 2006]Zivkovic, Z., der Heijden, F., 2006. Effcient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Let- ters 27, 773-780.