covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control desacoplado de un actuador de rigidez variable para robots asistenciales
Información de la revista
Vol. 13. Núm. 1.
Páginas 80-91 (enero - marzo 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3505
Vol. 13. Núm. 1.
Páginas 80-91 (enero - marzo 2016)
Open Access
Control desacoplado de un actuador de rigidez variable para robots asistenciales
Decoupled control of a variable stiffness actuator for assistive robots
Visitas
3505
J. Medina
Autor para correspondencia
jomedina@ing.uc3m.es

Autor para correspondencia.
, A. Jardón, C. Balager
Robotics Lab, Departamento de Ingeniería de Sistemas y Automática, Universidad Carlos III de Madrid, Av. Universidad, 30, 28911, Leganés, Madrid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Los actuadores de rigidez variable son dispositivos que permiten cambiar la posición y rigidez articular de un robot en forma simultánea. En los últimos años se han diseñado y desarrollado muchos dispositivos de este tipo, con la esperanza de favorecer la seguridad en la interacción humano-robot y mejorar el rendimiento dinámico de los robots. En este artículo se presenta el desarrollo de un controlador para un actuador de rigidez variable de configuración serie. La estrategia de control se basa en la linealización por realimentación y el ajuste de dos controladores lineales. Esta estrategia permite el seguimiento de referencias de posición y rigidez articular de forma simultánea y desacoplada. Además, se realizan simulaciones en las que se incorpora este dispositivo dentro del robot asistencial ASIBOT, a fin de evaluar el desempeño del controlador, los cambios en la dinámica del robot y las posibles ventajas que tendrá la inclusión del mismo a nivel de seguridad en la interacción física humano-robot.

Palabras clave:
control de robot
sistemas no lineales
linealización por realimentación
interacción hombre/máquina.
Abstract

The variable stiffness actuators are devices that change the position and stiffness of a robot simultaneously. In recent years have been designed and developed many devices of this type, hoping to ensure safety in human-robot interaction and improve the dynamic performance of robots. In this article, we present the control of a variable stiffness actuator with serial configuration. The control strategy is based on feedback linearization and adjustment of two linear controllers. This allows the control, independently, of the stiffness and the equilibrium position of the joint. Finally, the behavior of this device within the assistive robot ASIBOT, is simulated in order to assess: the controller performance, changes in the dynamics of the robot and possible advantages of a level of safety during physical interaction human-robot.

Keywords:
robot control
nonlinear systems
feedback linearization
man/machine interation
Referencias
[Ahmed and Kalaykov, 2010]
M. Ahmed, R. Kalaykov.
Semi-active compliant robot enabling collision safety for human robot interaction.
International Conference on Mechatronics and Automation (ICMA) 2010, pp. 1932-1937
[Bicchi et al., 2001]
A. Bicchi, S. Rizzini, G. Tonietti.
Compliant design for intrinsic safety: general issues and preliminary design.
Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, Vol. 4, pp. 1864-1869
[Bicchi et al., 2005]
A. Bicchi, G. Tonietti, M. Bavaro, M. Piccigallo.
Variable stiffness actuators for fast and safe motion control.
The Eleventh International Symposium Robotics Research, pp. 527-536
[Caldwell et al., 1995]
D. Caldwell, G. Medrano-Cerda, M. Goodwin.
Control of pneumatic muscle actuators.
IEEE Control Systems, 15 (1995), pp. 40-48
[Catalano et al., 2011]
M. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, A. Bicchi.
Vsa-cubebot: A modular variable stiffness platform for multiple degrees of freedom robots.
IEEE International Conference on. Robotics and Automation (ICRA) 2011, pp. 5090-5095
[Choi et al., 2009]
J. Choi, S. Hong, W. Lee, S. Kang.
A variable stiffness joint using leaf springs for robot manipulators.
IEEE International Conference on. Robotics and Automation. ICRA’09, pp. 4363-4368
[David Braun and Vijayakumar, 2012]
M.H. David Braun, S. Vijayakumar.
Optimal variable stiffness control: Formulation and application to explosive movement tasks.
Autonomous Robots, 33 (2012), pp. 237-253
[De Luca and Book, 2008]
A. De Luca, W.J. Book.
Springer Handbook of Robotics, (2008),
[De Luca and Lucibello, 1998]
A. De Luca, P. Lucibello.
A general algorithm for dynamic feedback linearization of robots with elastic joints.
Proceedings. 1998 IEEE International Conference on. Robotics and Automation, 1998. Vol. 1, pp. 504-510
[Garabini et al., 2011]
M. Garabini, A. Passaglia, F. Belo, P. Salaris, A. Bicchi.
Optimality principles in variable stiffness control: The vsa hammer.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2011, pp. 3770-3775
[Goris et al., 2011]
K. Goris, J. Saldien, B. Vanderborght, D. Lefeber.
Mechanical design of the huggable robot probo.
International Journal of Humanoid Robotics, 08 (2011), pp. 481-511
[Grebenstein et al., 2011]
M. Grebenstein, A. Albu-Scha¿ı¿½ffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger.
The dlr hand arm system.
IEEE International Conference on. Robotics and Automation (ICRA) 2011, pp. 3175-3182
[Groothuis et al., 2012]
S.S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, R. Carloni.
The vsaut-ii: A novel rotational variable stiffness actuator.
Proceedings of the International Conference on Robotics and Automation,
[Haddadin et al., 2009]
S. Haddadin, A. Albu-Schaffer, M. Frommberger, J. Rossmann, G. Hirzinger.
Towards a standard crash-testing protocol for robot safety part i: Results.
Robotics and Automation ICRA’09 IEEE International Conference on., pp. 272-279
[Haddadin et al., 2007]
S. Haddadin, T. Laue, U. Frese, G. Hirzinger.
Foul 2050: thoughts on physical interaction in human-robot soccer.
IEEE/RSJ International Conference on. Intelligent Robots and Systems. IROS 2007., pp. 3243-3250
[Hogan, 1985]
N. Hogan.
Impedance control: An approach to manipulation: Part ill applications.
Journal of dynamic systems, measurement, and control, 107 (1985), pp. 17
[Ikuta et al., 2000]
K. Ikuta, M. Nokota, H. Ishii.
Safety evaluation method of human-care robot control.
Proceedings of 2000 International Symposium on. Micromechatronics and Human Science. MHS 2000., pp. 119-127
[Isidori, 1995]
A. Isidori.
Nonlinear Control Systems.
3rd Edition., Springer-Verlag New York, Inc., (1995),
[Jafari et al., 2011]
A. Jafari, N. Tsagarakis, D. Caldwell.
Awas-ii: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio.
IEEE International Conference on. Robotics and Automation (ICRA) 2011, pp. 4638-4643
[Jafari et al., 2010]
A. Jafari, N. Tsagarakis, B. Vanderborght, D. Caldwell.
A novel actuator with adjustable stiffness (awas).
IEEE/RSJ International Conference on. Intelligent Robots and Systems (IROS) 2010, pp. 4201-4206
[Jardon et al., 2012]
A. Jardon, J. Victores, S. Martinez, A. Gimenez, C. Balaguer.
Personal autonomy rehabilitation in home environments by a portable assistive robot.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42 (2012, July), pp. 561-570
[Khatib, 1995]
Khatib, O., 1995. Inertial properties in robotic manipulation: An object-level framework. The International Journal of Robotics Research 14 (1), 19-36. URL http://ijr.sagepub.com/content/14/1/19.abstract.
[Lee, 1997]
J. Lee.
Sep 1997. A study on the manipulability measures for robot manipulators.
Proceedings of the 1997 IEEE/RSJ International Conference on. Intelligent Robots and Systems IROS’97. Vol. 3, pp. 1458-1465
[Li et al., 2012]
Z. Li, B. Vanderborght, N. Tsagarakis, L. Colasanto, D. Caldwell.
Stabilization for the compliant humanoid robot coman exploiting intrinsic and controlled compliance.
IEEE International Conference on. Robotics and Automation (ICRA) 2012, pp. 2000-2006
[Lozano and Brogliato, 1992]
R. Lozano, B. Brogliato.
Adaptive control of robot manipulators with flexible joints.
Automatic Control, IEEE Transactions on, 37 (1992), pp. 174-181
[Ozgoli and Taghirad, 2004]
Ozgoli, S., Taghirad, H. D., 2004. A survey on the control of flexible joint robots.
[robots. et al., 2008]
robots. Palli, G. Melchiorri, C.A. De Luca.
On the feedback linearization of robots with variable joint stiffness.
IEEE International Conference on. Robotics and Automation. ICRA 2008, pp. 1753-1759
[Petit et al., 2010]
F. Petit, M. Chalon, W. Friedl, M. Grebenstein, A. Albu-Scha¿ı¿½ ffer, G. Hirzinger.
Bidirectional antagonistic variable stiffness actuation: Analysis, design amp; implementation.
IEEE International Conference on. Robotics and Automation (ICRA), pp. 4189-4196
[Pfeifer and Bongard, 2006]
R. Pfeifer, J. Bongard.
How the body shapes the way we think: a new view of intelligence.
MIT press, (2006),
[Pfeifer et al., 2007]
R. Pfeifer, M. Lungarella, F. Iida.
Self-organization, embodiment, and biologically inspired robotics.
science, 318 (2007), pp. 1088-1093
[Pratt and Williamson, 1995]
G. Pratt, M. Williamson.
Series elastic actuators.
IEEE/RSJ International Conference on. Intelligent Robots and Systems 95.’Human Robot Interaction and Cooperative Robots’,1995, Proceedings. vol. 1, pp. 399-406
[Schiavi et al., 2008]
R. Schiavi, G. Grioli, S. Sen, A. Bicchi.
Vsa-ii: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans.
IEEE International Conference on Robotics and Automation. ICRA 2008., pp. 2171-2176
[Vanderborght et al., 2011]
B. Vanderborght, N.G. Tsagarakis, R.V. Ham, I. Thorson, D.G. Caldwell.
Maccepa 2.0: compliant actuator used for energy efficient hopping robot chobino1d.
Auton. Robots, (2011), pp. 55-65
[Vanderborght et al., 2008]
B. Vanderborght, R. Van Ham, B. Verrelst, M. Van Damme, D. Lefeber.
Overview of the lucy project: Dynamic stabilization of a biped powered by pneumatic artificial muscles.
Advanced Robotics, 22 (2008), pp. 1027-1051
[Versace, 1971]
J. Versace.
A review of severity index. 15th Stapp Conference.
SAE Technical Paper, (1971, Jun), pp. 35-47
[Villegas et al., 2012]
D. Villegas, M. Van Damme, B. Vanderborght, P. Beyl, D. Lefeber.
Third generation pleated pneumatic artificial muscles for robotic applications: Development and comparison with mckibben muscle.
Advanced Robotics, 26 (2012), pp. 1205-1227
[Wolf et al., 2011]
S. Wolf, O. Eiberger, G. Hirzinger.
The dlr fsj: Energy based design of a variable stiffness joint.
2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5082-5089
[Wolf and Hirzinger, 2008]
S. Wolf, G. Hirzinger.
A new variable stiffness design: Matching requirements of the next robot generation.
IEEE International Conference on Robotics and Automation. ICRA 2008, pp. 1741-1746
[Yang et al., 2011]
C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, E. Burdet.
Human-like adaptation of force and impedance in stable and unstable interactions.
IEEE Transactions on Robotics, 27 (2011), pp. 918-930
[Zeng and Bone, 2008]
L. Zeng, G. Bone.
Design of foam covering for robotic arms to ensure human safety.
Canadian Conference on.Electrical and Computer Engineering. CCECE 2008, (2008, May), pp. 001145-001150
Descargar PDF
Opciones de artículo