covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Difuso con Estimador de Estados para Sistemas de Páncreas Artificial
Información de la revista
Vol. 13. Núm. 4.
Páginas 393-402 (octubre - diciembre 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3356
Vol. 13. Núm. 4.
Páginas 393-402 (octubre - diciembre 2016)
Open Access
Control Difuso con Estimador de Estados para Sistemas de Páncreas Artificial
An Insulin Infusion Fuzzy Controller with State Estimation for Artificial Pancreas Systems
Visitas
3356
Rodrigo González
Autor para correspondencia
ragonz11@uc.cl

Autor para correspondencia.
, Aldo Cipriano
Departamento de Ingeniería Eléctrica, Escuela de Ingeniería Civil, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860, Santiago, Chile
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Se propone la utilización de un controlador difuso sobre un modelo de estados mínimos con el fin de alcanzar un control de infusión de insulina continuo y eficiente en pacientes con T1DM. El sistema se apoya con un Filtro Extendido de Kalman para suplir las deficiencias de los dispositivos físicos actuales y estimar insulina remanente en el organismo con el fin de predecir su comportamiento futuro. El controlador sintonizado logra una respuesta restringida entre [80, 140] mgdl, con una media de 117, 6 mgdl y desviación estándar de 11, 3 mgdl sobre un conjunto de 365 realizaciones de 24 horas de control con 4 ingestas diarias. Estos resultados muestran que es posible diseñar controladores de baja complejidad que son fácilmente sintonizables por usuarios experimentados o médicos, con un nuevo enfoque de revisión en lazo cerrado. Además, la combinación de técnicas heurísticas con aquellas basadas en modelos permite sintentizar un controlador robusto frente al contexto real de aplicación y, también, administrar en forma eficiente el gasto de insulina. Aún así, la aplicacioón de un sistema completamente automatizado en un ser humano requerirá modelos de mayor dimensión para ajustarse a diferentes situaciones, un controlador de alta robustez y amplia adaptabilidad al organismo de cada paciente y su rutina de ingestas.

Palabras clave:
Control biomédico
Control difuso
Filtros Extendidos de Kalman
Sistemas médicos
Sistemas no lineales
Abstract

A fuzzy controller for a minimal states model is proposed to achieve a continuous and effcient insulin infusion in patients with Type 1 Diabetes. An Extended Kalman Filter is also applied to supply the deficiencies of the current glucose sensor technologies and estimate residual insulin in the system to predict future behavior. The controller is tuned manually and iteratively, and achieves closed-loop responses of glycemia constrained between [80,140] (mgdl), with a mean of 117, 6 (mgdl) and a standard deviation of 11, 3 (mgdl) over a whole year ensemble of 24-hour system responses with 4 meal intakes per day. These results show that is possible to design low complexity controllers that are easily tunable by experienced users or physicians focusing on a closed-loop system response analysis. Also, the combination of heuristic and model-based techniques allows to synthesize robust controllers for real application situations and, furthermore, effciently manage the insulin usage. Nevertheless, the actual application of a closed-loop system on a human being should require higher dimension models to fit different situations, a proven robust controller and wide adaptability to different patients and their meal intake routine.

Keywords:
Biomedical control
Extended Kalman Filters
Fuzzy control
Medical systems
Nonlinear systems
Referencias
[Al-Fandi et al., 2012]
Al-Fandi, M., Jaradat, M.A., Sardahi, Y., 2012. Optimal pid-fuzzy logic controller for type 1 diabetic patients. En: Mechatronics and its Applications (ISMA), 2012 8th International Symposium on. IEEE, pp. 1-7.
[Atlas et al., 2010]
E. Atlas, R. Nimri, S. Miller, E.A. Grunberg, M. Phillip.
Md-logic artificial pancreas system a pilot study in adults with type 1 diabetes.
Diabetes Care, 33 (2010), pp. 1072-1076
[Bergman et al., 1981]
R.N. Bergman, L.S. Phillips, C. Cobelli.
Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose.
Journal of Clinical Investigation, 68 (1981), pp. 1456
[Bondia et al., 2010]
J. Bondia, J. Vehí, C. Palerm, P. Herrero.
El páncreas artificial: control automático de infusión de insulina en diabetes mellitus tipo 1.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 7 (2010), pp. 5-20
[Campos-Delgado et al., 2006]
D.U. Campos-Delgado, M. Hernández-Ordoñez, R. Femat, A. Gordillo-Moscoso.
Fuzzy-based controller for glucose regulation in type1 diabetic patients by subcutaneous route.
Biomedical Engineering, IEEE Transactions on, 53 (2006), pp. 2201-2210
[Elashoff et al., 1982]
J. Elashoff, T. Reedy, J. Meyer.
Analysis of gastric emptying data.
Gastroenterology, 83 (1982),
[Foster-Powell et al., 2002]
K. Foster-Powell, S.H. Holt, J.C. Brand-Miller.
International table of glycemic index and glycemic load values: 2002.
The American journal of clinical nutrition, 76 (2002), pp. 5-56
[Furler et al., 1985]
S.M. Furler, E.W. Kraegen, R.H. Smallwood, D.J. Chisholm, et al.
Blood glucose control by intermittent loop closure in the basal mode: computer simulation studies with a diabetic model.
Diabetes care, 8 (1985), pp. 553-561
[Ismail et al., 2009]
R. Ismail, K. Jusoff, T. Ahmad, S. Ahmad, R. Ahmad.
Fuzzy state space model of multivariable control systems.
Computer and Information Science, 2 (2009), pp. 19
[ISO, 2003]
ISO 15197, Mar. 2003. In vitro diagnostic test systems – requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. Standard, International Organization for Standardization, Geneva, Switzerland.
[Jahn et al., 2013]
L.G. Jahn, J.J. Capurro, B.L. Levy.
Comparative dose accuracy of durable and patch insulin infusion pumps.
Journal of diabetes science and technology, 7 (2013), pp. 1011-1020
[Karvonen, 2014]
T. Karvonen.
Stability of linear and non-linear kalman filters. Master's thesis.
University of Helsinki, (December 2014),
[Khan et al., 2013]
I.U. Khan, T. Ahmad, N. Maan.
An inverse feedback fuzzy state space modeling (ffssm) for insulin-glucose regulatory system in humans.
Scientific Research and Essays, 8 (2013), pp. 1570-1583
[Lehmann y Deutsch, 1992]
E. Lehmann, T. Deutsch.
A physiological model of glucose-insulin interaction in type 1 diabetes mellitus.
Journal of biomedical engineering, 14 (1992), pp. 235-242
[Maleki y Geramipour, 2011]
Maleki, A., Geramipour, A., 2011. Continuous control of blood glucose in tidm using fuzzy logic controller in insulin pump: A simulation study. En: Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on. IEEE, pp. 122-127.
[Man et al., 2006]
C. Man, M. Camilleri, C. Cobelli.
A system model of oral glucose absorption: validation on gold standard data.
Biomedical Engineering, IEEE Transactions on, 53 (2006), pp. 2472-2478
[Mythreyi et al., 2014]
K. Mythreyi, S.C. Subramanian, R.K. Kumar.
Nonlinear glucose– insulin control considering delaysâpart ii: Control algorithm.
Control Engineering Practice, 28 (2014), pp. 26-33
[Nimri y Phillip, 2014]
R. Nimri, M. Phillip.
Artificial pancreas: fuzzy logic and control of glycemia.
Current Opinion in Endocrinology, Diabetes and Obesity, 21 (2014), pp. 251-256
[Russell et al., 2014]
S.J. Russell, F.H. El-Khatib, M. Sinha, K.L. Magyar, K. McKeon, L.G. Goergen, C. Balliro, M.A. Hillard, D.M. Nathan, E.R. Damiano.
Outpatient glycemic control with a bionic pancreas in type 1 diabetes.
New England Journal of Medicine, 371 (2014), pp. 313-325
[Shapira et al., 2010]
G. Shapira, O. Yodfat, A. HaCohen, P. Feigin, R. Rubin.
Bolus guide: a novel insulin bolus dosing decision support tool based on selectionof carbohydrate ranges.
Journal of diabetes science and technology, 4 (2010), pp. 893-902
[Steil et al., 2006]
G.M. Steil, K. Rebrin, C. Darwin, F. Hariri, M.F. Saad.
Feasibility of automating insulin delivery for the treatment of type 1 diabetes.
Diabetes, 55 (2006), pp. 3344-3350
[Sturis et al., 1991]
J. Sturis, K.S. Polonsky, E. Mosekilde, E. Van Cauter.
Computer model for mechanisms underlying ultradian oscillations of insulin and glucose.
American Journal of Physiology-Endocrinology And Metabolism, 260 (1991), pp. E801-E809
[Tolić et al., 2000]
I.M. Tolić, E. Mosekilde, J. Sturis.
Modeling the insulin–glucose feedback system: the significance of pulsatile insulin secretion.
Journal of Theoretical Biology, 207 (2000), pp. 361-375
[Turksoy et al., 2014]
K. Turksoy, L. Quinn, E. Littlejohn, A. Cinar.
Multivariable adaptive identification and control for artificial pancreas systems.
Biomedical Engineering, IEEE Transactions on, 61 (2014), pp. 883-891
[Zarkogianni et al., 2007]
Zarkogianni, K., Mougiakakou, S.G., Prountzou, A., Vazeou, A., Bartsocas, C. S., Nikita, K.S., 2007. An insulin infusion advisory system for type 1 diabetes patients based on non-linear model predictive control methods. En: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. IEEE, pp. 5971-5974.
Descargar PDF
Opciones de artículo