covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control fraccionario: fundamentos y guía de uso
Información de la revista
Vol. 13. Núm. 3.
Páginas 265-280 (julio - septiembre 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4928
Vol. 13. Núm. 3.
Páginas 265-280 (julio - septiembre 2016)
Open Access
Control fraccionario: fundamentos y guía de uso
Fractional Control: Fundamentals and User Guide
Visitas
4928
Blas M. Vinagrea,
Autor para correspondencia
bvinagre@unex.es

Autor para correspondencia.
, Vicente Feliu-Batlleb, Inés Tejadoa
a Escuela de Ingenierías Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, España
b Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla – La Mancha, Avenida Camilo José Cela, s/n, 13071 Ciudad Real, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El objetivo del presente tutorial de control fraccionario es presentar los fundamentos de esta disciplina y las principales herramientas computacionales disponibles para su uso y aplicación por parte del ingeniero de control. El enfoque escogido pretende hacer accesible desde el primer momento su ubicación en el control clásico y las bases para entender cómo cualquier estrategia de control que haga uso de los operadores derivada y/o integral (es decir, casi todas) puede generalizarse al considerar la posibilidad de utilizar dichos operadores con un orden no necesariamente entero. Los casos de estudio considerados (el doble integrador y el servomecanismo de posición) han sido elegidos no para exponer las bondades del control fraccionario, sino para mostrar la amplitud de posibilidades que proporciona su utilización incluso considerando sistemas extraordinariamente comunes en la literatura de control.

Palabras clave:
Control fraccionario
Sistemas fraccionarios
Control robusto
Abstract

The purpose of this tutorial on fractional control is to present the foundations of this discipline and the main computational tools available for its use and application by the control engineer. The chosen approach aims to make accessible from the very beginning its location in the classical control and the foundations for a clear understanding on how any control strategy that makes use of the derivative and / or the integral operators (i.e., almost all) can be generalized by considering these operators with not necessarily integer order. The case studies considered (the double integrator and the position servo) have been chosen not to expose the benefits of fractional control, but to show the range of possibilities that provides remarkably even considering its application to systems of common use in the literature of control.

Keywords:
Fractional Control
Fractional Systems
Robust Control
Referencias
[Aström and Murray, 2008]
K.J. Aström, R.M. Murray.
Feedback Systems. An Introduction for Scientists and Engineers.
Princeton, (2008),
[Bennett, 1993]
S. Bennett.
A History of Control Engineering 1930-1955.
Peter Peregrinus (IEE), (1993),
[Bode, 1940]
H. Bode.
Relations between attenuation and phase in feedback amplifier design.
Bell System Technical Journal, 19 (1940), pp. 421-454
[Bode, 1945]
H. Bode.
Network Analysis and Feedback Amplifier Design.
Van Nostrand, (1945),
[Carlson and Halijak, 1961]
G.E. Carlson, C. Halijak.
Simulation of the fractional derivative operator s and the fractional integral operator 1\s. In: Proceedings of the Central States Simulation Council Meeting on Extrapolation of Analog Computation Methods.
Kansas, (1961), pp. 1-22
[Chen et al., 2009]
Y.Q. Chen, I. Petrás, D. Xue.
Fractional order control - A tutorial.
In: Proceedings of the American Control Conference (ACC’09)., (2009), pp. 1397-1411
[CR Group, 2010b]
CRONE Group, 2010b. Brief Presentation of the Object Oriented CRONE Toolbox. Version Beta 1.
[CR Group, 2010c]
CRONE Group, 2010c. CRONE Control Design Module User's Guide. Version 4.0.
[Dormido et al., 2012]
S. Dormido, E. Pisoni, A. Visioli.
Interactive tools for designing fractional-order PID controllers.
International Journal of Innovative Computing, Information and Control, 8 (2012), pp. 4570-4590
[Dugowson, 1994]
Dugowson, S., 1994. Les différentielles métaphysiques: Histoire et philosophie de la généralisation de l’ordre de dérivation. Ph.D. thesis, University of Paris.
[Edwards and Spurgeon, 1998]
C. Edwards, S.K. Spurgeon.
Sliding Mode Control. Theory and Applications.
Taylor & Francis Ltd, (1998),
[Horowitz, 1963]
I. Horowitz.
Synthesis of Feedback Systems.
Academic Press, (1963),
[Horowitz and Sidi, 1972]
I. Horowitz, M. Sidi.
Synthesis of feedback systems with large plant ignorance for prescribed time domain tolerances.
International Journal of Control, 16 (1972), pp. 287-309
[HosseinNia et al., 2010]
S.H. HosseinNia, D. Sierociuk, A.J. Calderón, B.M. Vinagre.
Augmented system approach for fractional order SMC of a DC-DC Buck converter.
In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications., (2010),
[HosseinNia et al., 2013]
S.H. HosseinNia, I. Tejado, B.M. Vinagre.
Fractional-order reset control: Application to a servomotor.
Mechatronics, 23 (2013), pp. 781-788
[Li et al., 2016]
Z. Li, L. Liu, S. Dehghan, Y.Q. Chen, D. Xue.
A review and evaluation of numerical tools for fractional calculus and fractional order controls.
International Journal of Control, (2016),
[Manabe, 1961]
S. Manabe.
The non-integer integral and its application to control systems.
Japanese Institute of Electrical Engineers Journal, 6 (1961), pp. 83-87
[Miller and Ross, 1993]
K. Miller, B. Ross.
An Introduction to the Fractional Calculus and Fractional Differential Equations.
John Wiley and Sons, (1993),
[Monje et al., 2010]
C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu.
Fractional-order Systems and Controls.
Fundamentals and Applications, (2010),
[Monje et al., 2008]
C.A. Monje, B.M. Vinagre, V. Feliu, Y.Q. Chen.
Tuning and auto-tuning of fractional order controllers for industry applications.
Control Engineering Practice, 16 (2008), pp. 798-812
[Oldham and Spanier, 2006]
K. Oldham, J. Spanier.
The Fractional Calculus. Theory and Applications of Differentiation and Integration of Arbitrary Order.
Dover, (2006),
[Opdycke, 1967]
R.R. Opdycke.
An Investigation of the Strait servo.
Kansas State University, (1967),
[Oustaloup, 1991]
A. Oustaloup.
La Commade CRONE: Commande Robuste d’Ordre Non Entier.
Hermes, (1991),
[Petrás, 2011b]
I. Petrás.
Engineering Education and Research Using MATLAB.
Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab, (2011), pp. 239-264
[Podlubny, 1999a]
I. Podlubny.
Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering.
Academic Press, (1999),
[Podlubny, 1999b]
I. Podlubny.
Fractional order systems and PI-lambda-D-mu controllers.
IEEE Transactions on Automatic Control, 44 (1999 b), pp. 208-214
[Podlubny et al., 2002]
I. Podlubny, I. Petrás, B.M. Vinagre, P. O’Leary, L. Dorcák.
Analogue realizations of fractional-order controllers.
Nonlinear Dynamics, 29 (2002), pp. 281-296
[Rao and Bernstein, 2001]
Rao, V.G., Bernstein, D.S., 2001. Naive control of the double integrator. IEEE Control Systems Magazine October, 86-97.
[Sierociuk, 2003]
Sierociuk, D., 2003. Fractional states-space toolkit (FSST). URL: http://www.ee.pw.edu.pl/dsieroci/fsst/fsst.htm
[Stein and Athans, 1987]
G. Stein, M. Athans.
The LQR/LTR procedure for multivariable feedback control design.
IEEE Transactions on Automatic Control, 32 (1987), pp. 105-114
[Tenreiro Machado, 2011]
J.A. Tenreiro Machado.
Communications in nonlinear science and numerical simulation.
Root locus of fractional linear systems, 16 (2011), pp. 3855-3862
[Tepljakov, 2015]
Tepljakov, A., 2015. FOMCON toolbox reference manual. URL: http://docs.fomcon.net/
[Tepljakov, 2016]
Tepljakov, A., 2016. FOMCON: Fractional-order modeling and control. (Fecha de consulta: 21/03/16). URL: http://fomcon.net/
[Tejado et al., 2014]
I. Tejado, S.H. HosseinNia, B.M. Vinagre.
Adaptive gain-order fractional control for network-based applications.
Fractional Calculus and Applied Analysis, 17 (2014), pp. 462-482
[Tustin et al., 1958]
Tustin, A., Allanson, J.T., Layton, J.M., Jakeways, R.J., 1958. The design of systems for automatic control of the position of massive objects. The Proceedings of the Institution of Electrical Engineers 105.
[Valério, 2005a]
Valério, D., 2005a. Ninteger: Fractional control toolbox for MatLab. URL: http://www.mathworks.com/matlabcentral/fileexchange/8312-ninteger
[Valério, 2005b]
Valério, D., 2005b. Ninteger: Fractional control toolbox for MatLab. URL: http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
[Valério, 2005c]
Valério, D., 2005c. Ninteger v. 2.3 – fractional control toolbox for MatLab. URL: http://web.ist.utl.pt/duarte.valerio/ninteger/Manual.pdf
[Vilanova and Visioli, 2012]
PID Control in the Third Millennium,
[Vinagre and Monje, 2006]
B.M. Vinagre, C.A. Monje.
Introducción al control fraccionario.
Revista Iberoamericana de Automática e Informática Industrial, 3 (2006), pp. 5-23
Descargar PDF
Opciones de artículo