[Abate et al., 2008]Abate, Alessandro, Maria Prandini, John Lygeros, Shankar Sastry.
Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems.
Automatica, 44 (2008), pp. 2724-2734
[Adamek and Sobotka, 2008]Adamek, F., M Sobotka, O Stursberg. 2008. Stochastic optimal control for hybrid systems with uncertain discrete dynamics. Proceedings of the IEEE International Conference on Automation Science and Engineering, 23-28. Washington D.C.
[Åström and Karl Johan, 2003]Åström, Karl Johan, Bo Bernhardsson. 2003. System with Lebesgue Sampling. Directions in Mathematical Systems Theory and Optimization, LNCIS 268. LNCIS. Springer-Verlag Berlin Heidelberg.
[Axelsson et al., 2007]H. Axelsson, Y. Wardi, M. Egerstedt, E.I. Verriest.
Gradient descent approach to optimal mode scheduling in hybrid dynamical systems.
Journal of Optimization Theory and Applications, 136 (2007), pp. 167-186
[Azuma et al., 2010]Azuma, Shun-ichi, Jun-ichi Imura, Toshiharu Sugie.
Lebesgue piecewise affine approximation of nonlinear systems.
Nonlinear Analysis: Hybrid Systems, 4 (2010), pp. 92-102
[Barton et al., 2006]Barton, I. Paul, Cha Kun Lee, Mehmet Yunt.
Optimization of hybrid systems.
Computers & Chemical Engineering, 30 (2006), pp. 1576-1589
[Bemporad et al., 2011]A. Bemporad, S. Di, Cairano.
Model-predictive control of discrete hybrid stochastic automata.
IEEE Transactions on Automatic Control, 56 (2011), pp. 1307-1321
[Bemporad et al., 1999]Bemporad, Alberto, Manfred Morari.
Control of systems integrating logic, dynamics, and constraints.
Automatica, 35 (1999), pp. 407-427
[Blackmore et al., 2010]L. Blackmore, M. Ono, A. Bektassov, B.C. Williams.
A probabilistic particle-control approximation of chance-constrained stochastic predictive control.
IEEE Transactions on Robotics, 26 (2010), pp. 502-517
[Borrelli et al., 2005]Borrelli, Francesco, Mato Baotić, Alberto Bemporad, Manfred Morari.
Dynamic programming for constrained optimal control of discrete-time linear hybrid systems.
Automatica, 41 (2005), pp. 1709-1721
[Bryson et al., 1975]Bryson, Jr Arthur E., Yu-Chi Ho. 1975. Applied optimal control: optimization, estimation and control. Revised. Taylor & Francis.
[Busoniu et al., 2010]Busoniu, Lucian, Robert Babuska, Bart De Schutter,Damien Ernst. 2010. Reinforcement learning and dynamic programming using function approximators. 1.a ed. CRC Press.
[Cassandras et al., 2007]Cassandras, Christos G., John Lygeros. 2007. Stochastic hybrid systems. Boca Raton: Taylor & Francis.
[Deisenroth et al., 2009]Deisenroth, Marc Peter, Carl Edward Rasmussen, Jan Peters.
Gaussian process dynamic programming.
Neurocomputing, 72 (2009), pp. 1508-1524
[Di Cairano et al., 2009]S. Di Cairano, A. Bemporad, J. Júlvez.
Event-driven optimization-based control of hybrid systems with integral continuous-time dynamics.
Automatica, 45 (2009), pp. 1243-1251
[Ding et al., 2009]X.-C. Ding, Y. Wardi, M. Egerstedt.
On-line optimization of switched-mode dynamical systems.
IEEE Transactions on Automatic Control, 54 (2009), pp. 2266-2271
[Egerstedt et al., 2006]M. Egerstedt, Y. Wardi, H. Axelsson.
Transition-Time Optimization for Switched-Mode Dynamical Systems.
IEEE Transactions on Automatic Control, 51 (2006), pp. 110-115
[Girard, 2004]Girard, Agathe. 2004. Approximate methods for propagation of uncertainty with gaussian process models. University of Glasgow.
[Kuss, 2006]Kuss, M. 2006. Gaussian process models for robust regression, classification, and reinforcement learning. Technische Universite Darmstadt.
[Liberzon, 2003]Liberzon, Daniel. 2003. Switching in systems and control. Systems & Control: Foundations & Applications. Boston: Birkhäuser Boston Inc.
[Lincoln and Rantzer, 2006]B. Lincoln, A. Rantzer.
Relaxing Dynamic Programming.
IEEE Transactions on Automatic Control, 51 (2006), pp. 1249-1260
[Lunze et al., 2010]Lunze, Jan, Daniel Lehmann.
A state-feedback approach to event-based control.
Automatica, 46 (2010), pp. 211-215
[Mehta, 2005]Mehta, Tejas,Magnus Egerstedt. 2005. Learning multi-modal control programs. Hybrid Systems: Computation and Control, 466-479. Lecture Notes in Computer Science. Springer Berlin.
[Mehta et al., 2006]Mehta, R. Tejas, Magnus Egerstedt.
An optimal control approach to mode generation in hybrid systems.
Nonlinear Analysis, 65 (2006), pp. 963-983
[Mehta et al., 2008]Mehta, R. Tejas, Magnus Egerstedt.
Multi-modal control using adaptive motion description languages.
Automatica, 44 (2008), pp. 1912-1917
[Rantzer, 2006]A. Rantzer.
Relaxed Dynamic Programming in Switching Systems.
Control Theory and Applications IEE Proceedings -, 153 (2006), pp. 567-574
[Rasmussen, 2006]Rasmussen, Carl Edward,Christopher K. I. Williams. 2006. Gaussian processes for machine learning. MIT Press.
[Rosenstein et al., 2004]Rosenstein, Michael T.,Andrew G. Barto. 2004. Supervised Actor-Critic Reinforcement Learning. Handbook of Learning and Approximate Dynamic Programming, 359-380. John Wiley & Sons, Inc.
[Salichs et al., 2010]M.A. Salichs, M. Malfaz, J.F. Gorostiza.
Toma de Decisiones en Robótica.
Revista Iberoamericana de Automática e Informática Industrial RIAI, 7 (2010), pp. 5-16
[Shi et al., 2006]Shi, Peng, G.P. Yuanqing Xia, D. Liu, Rees.
On designing of sliding-mode control for stochastic jump systems.
IEEE Transactions on Automatic Control, 51 (2006), pp. 97-103
[Song et al., 2010]Song, Chunyue, Ping Li.
Near optimal control for a class of stochastic hybrid systems.
Automatica, 46 (2010), pp. 1553-1557
[Sutton et al., 1998]Sutton, Richard S.,Andrew G. Barto. 1998. Reinforcement learning: An introduction. MIT Press.
[Verdinelli et al., 1992]Verdinelli, Isabella, B. Joseph, Kadane.
Bayesian designs for maximizing information and outcome.
Journal of the American Statistical Association, 87 (1992), pp. 510-515
[Xu et al., 2003]Xu, Xuping,Panos J. Antsaklis. 2003. Results and perspectives on computational methods for optimal control of switched systems. Proceedings of the 6th international conference on Hybrid systems: computation and control, 540-555. Springer-Verlag.
[Xu et al., 2011]Xu, Yan-Kai, Xi-Ren Cao.
Lebesgue-Sampling-Based Optimal Control Problems with Time Aggregation.
IEEE Transactions on Automatic Control, 56 (2011), pp. 1097-1109
[Zhang et al., 2009]Zhang, Wei, A. Jianghai Hu, Abate.
On the value functions of the discrete-time switched LQR problem.
IEEE Transactions on Automatic Control, 54 (2009), pp. 2669-2674