covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii
Información de la revista
Vol. 9. Núm. 1.
Páginas 14-23 (enero - marzo 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
5260
Vol. 9. Núm. 1.
Páginas 14-23 (enero - marzo 2012)
Open Access
Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii
Visitas
5260
Pablo Millán
Autor para correspondencia
pmillan@cartuja.us.es

Autor en correspondencia.
, Luis Orihuela, Carlos Vivas, Francisco R. Rubio
Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n, Isla de la Cartuja, Sevilla, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En el presente trabajo se estudia el control óptimo con rechazo de perturbaciones L2 para sistemas lineales controlados a través de red. En estos sistemas el lazo de control se cierra utilizando una red de comunicaciones. Entre los problemas que introduce la red se encuentran posibles retrasos, en general aleatorios, así como pérdidas de paquetes. Desde un enfoque basado en funcionales de Lyapunov- Krasovskii (LKF) se aborda el diseño de controladores óptimos que, dado un nivel deseado de atenuación de perturbaciones, estabilicen el sistema minimizando a su vez un funcional de coste. En el artículo se desarrolla, en primer lugar, una formulación y solución general para el problema. Posteriormente, se resuelve para un funcional de Lyapunov-Krasovskii particular. El comportamiento de los controladores obtenidos se compara con el dado por un control clásico LQR en un escenario de control de distancia en carretera.

Palabras clave:
Redes de comunicación
Compensación de retrasos
Métodos de Lyapunov
Control óptimo
Retardo temporal
Referencias
[Azimi-Sadjadi, 2003]
Azimi-Sadjadi, B., December 2003. Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA, pp. 676-681.
[Branicky et al., 1998]
M.S. Branicky, V.S. Borkar, S.K. Mitter.
A unified framework for hybrid control: model and optimal control theory.
IEEE Trans. on Automatic Control, 43 (1998), pp. 31-45
[Delfour et al., 1975]
M.C. Delfour, C. McCalla, S.K. Mitter.
Stability and infinite-time quadratic cost problem for linear hereditary di_erential systems.
SIAM Journal on Control and Optimization, 13 (1975), pp. 48-88
[Dormido et al., 2008]
S. Dormido, J. Sánchez, E. Kofman.
Muestreo, control y comunicación basado en eventos.
RIAI Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 5-26
[El Ghaoui et al., 1997]
L. El Ghaoui, F. Oustry, M. AitRami.
A cone complementary linearization algorithm for static output-feedback and related problems.
IEEE Transactions on Automatic Control, 42 (1997), pp. 1171-1176
[Esfahani et al., 1998]
S.H. Esfahani, S.O.R. Moheimani, I.R. Petersen.
LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems.
IEE Proceedings Control Theory and Applications, 145 (1998), pp. 491-498
[Gupta et al., 2007]
V. Gupta, B. Hassibi, R.M. Murray.
Optimal LQG control across packet-dropping links.
Systems and Control Letters, 56 (2007), pp. 439-446
[Hale and Verduyn Lunel, 1993]
Hale, J.C., Verduyn Lunel, S.M., 1993. Introduction of functional di_erential equations. Springer, New York.
[Hespanha et al., 2007]
J. Hespanha, P. Naghshtabrizi, Y. Xu.
A survey of recent results in networked control systems.
Proceedings of the IEEE, special edition, 95 (2007), pp. 138-162
[Hokayem and Abdallah, 2004]
Hokayem, P.F., Abdallah, C.T., June 2004. Inherent issues in networked control systems: a survey. In: Proceedings of the American Control Conference. Boston, Massachusetts, USA, pp. 4897-4902.
[Jiang and Han, 2008]
X. Jiang, Q.L. Han.
New stability criteria for linear systems with interval time-varying delay.
Automatica, 44 (2008), pp. 2680-2685
[Jiang et al., 2008]
X. Jiang, Q.L. Han, S. Liu, A. Xue.
A new H1 stabilization criterion for networked control systems.
IEEE Transactions on Automatic Control, 53 (2008), pp. 1025-1032
[Kharatishvili, 1961]
G.L. Kharatishvili.
The maximum principle in the theory of optimal processes with delay (in russian).
Dokl. Akad. Nauk. SSSR, 136 (1961), pp. 39-42
[Kosmidou and Boutalis, 2006]
O.I. Kosmidou, Y.S. Boutalis.
A linear matrix inequality approach for guaranteed cost control of systems with state and input delays.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 36 (2006), pp. 936-942
[Krasovskii, 1962]
N. Krasovskii.
On analytic design of optimal controllers for systems with time delay.
Prikl. matem. i mekh., 26 (1962), pp. 39-51
[Mahmoud, 2000]
Mahmoud, M.S., 2000. Robust Control and Filtering for Time-delay Systems. Marcel Dekker, Inc., New York.
[Meng et al., 2009]
X. Meng, J. Lam, H. Gao.
Network-based H1 control for stochastic systems.
International Journal of Robust and Nonlinear Control, 19 (2009), pp. 295-312
[Mikheev et al., 1988]
Y.V. Mikheev, V.A. Sobolev, E. Fridman.
Asymptotic analysis of digital control systems.
Automatic and Remote Con**trol, 49 (1988), pp. 1175-1180
[Naghshtabrizi and Hespanha, 2005]
Naghshtabrizi, P., Hespanha, J., December 2005. Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, pp. 848-853.
[Nikolakopoulos et al., 2008]
G. Nikolakopoulos, A. Panousopoulou, A. Tzes.
Experimental controller tuning and QoS optimization of a wireless transmission scheme for realtime remote control applications.
Control Engineering Practice, 16 (2008), pp. 333-346
[Ross and Flugge-Lotz, 1969]
D.W. Ross, I. Flugge-Lotz.
An optimal control problem for systems with di_erential di_erence equation dynamics.
SIAM Journal On Control and Optimization, 7 (1969), pp. 609-623
[Salt et al., 2008]
J. Salt, V. Casanova, A. Cuenca, R. Pizá.
Sistemas de control basados en red. modelado y diseño de estructuras de control.
RIAI Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 5-20
[Shao, 2009]
H. Shao.
New delay-dependent stability criteria for systems with interval delay.
Automatica, 45 (2009), pp. 744-749
[Sinopoli et al., 2005]
Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S., December 2005. An LQG optimal linear controller for control systems with packet losses. In: 44th IEEE Conference on Decision and Control and the European Control Conference. Sevilla, Spain, pp. 458-463.
[Tatikonda and Mitter, 2004]
S. Tatikonda, S. Mitter.
Control under communication constraints.
IEEE Transactions on Automatic Control, 49 (2004), pp. 1056-1068
[Xiong and Lam, 2007]
J. Xiong, J. Lam.
Stabilization of linear systems over networks with bounded packet loss.
Automatica, 43 (2007), pp. 80-87
[Xu and Lam, 2007]
S. Xu, J. Lam.
On equivalence and e_ciency of certain stability criteria for time-delay systems.
IEEE Transactions on Automatic Control, 52 (2007), pp. 95-101
[Xu and Lam, 2008]
S. Xu, J. Lam.
A survey of linear matrix inequality techniques in stability analysis of delay systems.
International Journal of Systems Science, 39 (2008), pp. 1095-1113
[Yue et al., 2005]
D. Yue, Q.L. Han, J. Lam.
Network-based robust H1 control of systems with uncertainty.
Automatica, 41 (2005), pp. 999-1007
[Zampieri, 2008]
Zampieri, S., July 2008. Trends in networked control systems. In: Proceedings of the 17th World Congress IFAC. Seoul, Korea, pp. 2886-2894.
[Zhang and Yu, 2008]
D. Zhang, L. Yu.
Equivalence of some stability criteria for linear timedelay systems.
Applied Mathematics and Computation, 202 (2008), pp. 395-400
[Zhang et al., 2006]
H.S. Zhang, G. Duan, L. Xie.
Linear quadratic regulation for linear time varying systems with multiple input delays.
Automatica, 42 (2006), pp. 1465-1476
Descargar PDF
Opciones de artículo