covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Predictivo Distribuido Óptimo Aplicado al Control de Nivel de un Proces...
Información de la revista
Vol. 12. Núm. 4.
Páginas 365-375 (octubre - diciembre 2015)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3329
Vol. 12. Núm. 4.
Páginas 365-375 (octubre - diciembre 2015)
Open Access
Control Predictivo Distribuido Óptimo Aplicado al Control de Nivel de un Proceso de Cuatro Tanques Acoplados
Distributed Model Predictive Control Applied to a Four Interconnected Tank Process
Visitas
3329
Felipe D.J. Sorcia-Vázqueza,
Autor para correspondencia
fsorcia@cenidet.edu.mx

Autor para correspondencia.
, Carlos D. Garcia-Beltrana, Guillermo Valencia-Palomob, Gerardo Guerrero-Ramíreza, Manuel Adam-Medinaa, Ricardo Escobar-Jiméneza
a Centro Nacional de Investigación y Desarrollo Tecnológico, Interior Internado Palmira S/N, Palmira, 62490, Cuernavaca, Morelos, México
b Instituto Tecnológico de Hemosillo, Av. Tecnológico S/N, El Sahuaro, 83170, Hermosillo, Sonora, México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este artículo se presenta el desarrollo de un control predictivo distribuido óptimo (DOMPC) el cual está basado en el control predictivo óptimo centralizado (OMPC) y el control predictivo en modo dual. Esta adaptación engloba la partición del sistema a controlar en s subsistemas y la optimización de manera distribuida de las señales de control. Se considera que los controladores se comunican mediante una red de área local (LAN), la cual introduce un retardo de un instante de muestreo en la transmisión de los datos para la optimización. El esquema DOMPC propuesto se aplica a un sistema de 4 tanques y se realiza una comparación con el esquema OMPC centralizado.

Palabras clave:
Control distribuido
Control predictivo.
Abstract

This paper presents the development of an distributed optimal predictive control (DOMPC), this controller is based on the centralized optimal predictive control (OMPC) and the dual-mode predictive control. This adaptation encompasses the partition of the system in s subsystems and the distributed optimization of the control signals. It is assumed that the controllers are connected by a local area network, which introduces a communication delay of one sampling instant. The proposed scheme is applied to a 4 tanks benchmark system and it is compared with the centralized OMPC scheme.

Keywords:
Predictive control
Distributed control.
Referencias
[Alessio et al., 2011]
A. Alessio, D. Barcelli, A. Bemporad.
Decentralized model predictive control of dynamically coupled linear systems.
Journal of Process Control, 21 (2011), pp. 705-714
[Alvarado et al., 2011]
I. Alvarado, D.M. de la Peña, J.M. Maestre, M.A. Ridao, H. Scheu, W. Marquardt, R.R. Negenborn, B.D. Schutter, F. Valencia, J. Espinosa.
A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark.
Journal of Process Control, 21 (2011), pp. 800-815
[Camponogara et al., 2002]
E. Camponogara, D. Jia, B.H. Krogh, S. Talukdar.
Distributed model predictive control.
IEEE Control System Magazine, 22 (2002), pp. 44-52
[Fukushima et al., 2005]
Fukushima, H., Kon, K., Matsuno, F., 2005. Distributed model predictive control for multi-vehicle formation with collision avoidance constraints. In: IEEE European Control Conference. Sevilla, España, pp. 5480-5485.
[Jia and Krogh, 2001]
Jia, D., Krogh, B.H., 2001. Distributed model predictive control. In: IEEE American Control Conference. Arlington, VA, pp. 2767-2771.
[Johansson, 2000]
K.H. Johansson.
The quadruple-tank process: A multivariable laboratory with an adjustable zero.
IEEE Transaction on Control Systems Technology, 8 (2000), pp. 456-465
[Leirens et al., 2010]
Leirens, S., Zamora, C., Negenborn, R.R., Schutter, B.D., 2010. Coordination in urban water supply networks using distributed model predictive control. In: IEEE American Control Conference. Marriott Waterfront, Baltimore, MD, USA., pp. 3957-3962.
[Maestre et al., 2011]
J.M. Maestre, D.M. de la Peña, T. Alamo.
Distributed model predictive control based on agent negotiation.
Journal of Process Control, 21 (2011), pp. 685-697
[Maestre et al., 2009]
Maestre, J.M., de la Peña, D.M., Camacho, E.F., 2009. Distributed MPC based on a cooperative game. In: IEEE Conference on Decision and Control. Shanghai, P.R. China, pp. 5390-5395.
[Mercangöz and Doyle-III, 2007]
M. Mercangöz Doyle-III, F.J..
Distributed model predictive control of an experimental four-tank system.
Journal of Process Control, 17 (2007), pp. 297-308
[Morosan et al., 2011]
P.D. Morosan, R. Bourdais, D. Dumur, J. Buisson.
A distributed MPC strategy based on benders descomposition applied to multi-source multizone temperature regulation.
Journal of Process Control, 21 (2011), pp. 729-737
[Muske and Rawlings, 1993]
K.R. Muske, J.B. Rawlings.
Model predictive control with linear models.
American Institute of Chemical Engineers (AIChE) Journal, 39 (1993), pp. 262-287
[Pannocchia and Kerrigan, 2003]
Pannocchia, G., Kerrigan, E.C., 2003. Offset-free receding horizon control of constrained linear systems subject to time-varying setpoints and persistent unmeasured disturbances. Technical report, University of Cambridge.
[Rossiter, 2003]
Rossiter, J.A., 2003. Model-Based Predictive Control: A Practical Approach. CRC PRESS.
[Rossiter et al., 1998]
J.A. Rossiter, B. Kouvaritakis, M.J. Price.
A numerically robust state-space aproach to stable-predictive control strategies.
Automatica, 83 (1998), pp. 789-797
[Scokaert and Rawlings, 1998]
P.O.M. Scokaert, J.B. Rawlings.
Constrained linear quadratic regulation.
IEEE Transaction on Automatic Control, 43 (1998), pp. 1163-1168
[Vaccarini et al., 2009]
M. Vaccarini, S. Longhi, M.R. Katebi.
Unconstrained networked decentralized model predictive control.
Journal of Process Control, 14 (2009), pp. 328-339
[Venkat et al., 2008]
A.N. Venkat, I.A. Hiskens, J.B. Rawlings, S.J. Wright.
Distributed MPC strategies with application to power system automatic generation control.
IEEE Transactions on Control Systems Technology, 16 (2008), pp. 1192-1206
[Zafra-Cabeza et al., 2011]
Zafra-Cabeza, A., Maestre, J.M., Ridao, M.A., Camacho, E.F., Sánchez, L., 2011. A hierarchical distributed model predictive control approach to irrigation canals: A risk mitigation perspective. Journal of Process Control 21 (5) 787-799.
Descargar PDF
Opciones de artículo